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1 Basic Result

We need to show that there is just one way to form a wff using the formula-
building rules. That is, there is just one parse tree. The parentheses insure this.
(For the wff φ = ((A ∨B) ∧ (C ∨D)), it doesn’t matter whether we form the
fragment (A ∨B) first or (C ∨D) first; the tree is the same.)

The problem is that, without parentheses, A∨B∧C could be read as (A∨

B) ∧C or A ∨ (B ∧C). There would be no good way to assign semantics to
this.

Recall that earlier we showed that a non-empty proper prefix of a wff has
more open parens than close parens. It follows that a non-sentence symbol
wff phi is of the form (alpha conn beta), where alpha and beta have balanced
parentheses (alpha may be empty), and conn is one of the five connectives.
Furthermore, there is a unique way to write phi this way.

So an algorithm can find the connective at the root of the parse tree by
counting parentheses from left to right.

1.1 Problems and Issues

The parsing algorithm described above may need to read in the entire wff before
making any decisions. It may need time Ω(n2) to process a wff of length n.
Neither is desirable.

2 Related examples

2.1 Natural Language

Here is a (very ambiguous) grammar from natural language. The pipe symbol
∣ indicates a choice of several rules. So, for example, a Sentence can be a noun-
phrase followed by verb, or a noun-phrase, (transitive) verb, and noun-phrase
(object). In places, I’ve included words in square brackets that are optional but
may improve readability.
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Sentence : noun-phrase verb ∣ noun-phrase verb noun-phrase
noun-phrase : adjective noun ∣ noun ∣ noun-phrase relative-clause
relative-clause : [that] noun-phrase verb
noun : badger ∣ bovine ∣ butterfly ∣ buffalo
verb : bother ∣ bully ∣ bedevil ∣ buffalo
adjective : big ∣ blue ∣ Boston ∣ Binghamton ∣ Buffalo

E.g., a sentence could be
[The] Binghamton badgers [, that] Boston bovines bedevil [,] bother blue

butterflies.
(The commas and “the” actually change the meaning somewhat in English.)
or
Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo.
There is more than one way to parse this; find some! In fact, there are

exponentially-many ways to parse a string of n buffalos. Ignore capitalization
for this exercise.

2.2 Parenthesized wffs, revisited

Here is an alternative grammar for our wffs. We’ll use S (“start”) for wffs, C
for connectives, and A for alphabet symbols.

S ∶ A ∣ (¬S) ∣ (SCS)
C ∶ ∧ ∣ ∨ ∣ → ∣ ⇔

A ∶ A ∣B ∣C ∣⋯

With this grammar, we claim:

1. We derive exactly the same set of wffs as before.

2. A wff of length n can be parsed in time O(n).

3. A wff can be parsed left-to-right. To decide which rule to apply (i.e., for
wffs), a parser need only look at one unread character in addition to the
currently read symbol (i.e., does the suffix start with a letter, with “(¬,”
or with “((”).

Wffs can be parsed using a stack machine, in which the unbounded memory
consists of a stack. The last item pushed onto the stack is the only one available
to be read, by a pop operation. Following that pop, the previously-pushed item
is available, etc.

The algorithm is as follows. Start with “wff” on the stack. Repeatedly pop
the stack, getting a variable, v. Determine from the input (suffix of a supposed
wff) which rule applies, and push the variables and terminals on the right-hand-
side of the rule onto the stack, or consume input without pushing anything.

An example should make this clear. Time proceeds down.
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stack Remaining wff

S ((A ∨ (¬B)) ∧C)
(SCS) ((A ∨ (¬B)) ∧C)
SCS) (A ∨ (¬B)) ∧C)
(SCS)CS) (A ∨ (¬B)) ∧C)
SCS)CS) A ∨ (¬B)) ∧C)
ACS)CS) A ∨ (¬B)) ∧C)
CS)CS) ∨(¬B)) ∧C)
S)CS) (¬B)) ∧C)
(¬S))CS) (¬B)) ∧C)
¬S))CS) ¬B)) ∧C)
S))CS) B)) ∧C)
A))CS) B)) ∧C)
))CS) )) ∧C)
)CS) ) ∧C)
CS) ∧C)
S) C)
A) C)
) )

You can play with this using the MATLAB function popupparse. Select
“full” grammar (for “full parentheses”).

2.3 Dropping Parentheses

At the end of section 1.3, Enderton gives (very informally) rules for dropping
some parentheses and still recovering the wff unambiguously. In my view, the
definition is somewhat lacking. Unambiguity is asserted, but not proven. The
expression (A) is not allowed.

A grammar for the partially-parenthesized wffs is given under popupparse.
You can check that, for each left-hand-side of a rule and each possible upcoming
character, at most one non-empty right-hand side applies. (Apply the empty
right-hand side, when present, only as a last resort.) We won’t prove that this
grammar is correct (which means that it derives the collection of expressions that
you expect—we’ve never defined these), but you can play with it on MATLAB.
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