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Overview

Infinite?

“Given” an infinite set Σ of wffs and a single wff τ , can we “tell” whether
Σ ⊧ τ?

Compactness and Effectiveness 3/45



Overview

Four Big Results

(Compactness.) Σ ⊧ τ iff for some finite Σ0 ⊆ Σ, we have Σ0 ⊧ τ .

Suppose Σ is recursively enumerable (i.e., a computer can print the
(possibly infinitely many) elements of Σ). Then the set of
tautological consequences of Σ is also r.e.

There is a set S that is r.e. but not decidable (i.e., no computer that
halts on all inputs can, given x , determine whether x ∈ S).

There is a decidable set Σ such that Σ = {τ ∶ Σ ⊧ τ} is not decidable.
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Overview

Compactness Implies R.E. Consequences

Compactness implies {τ ∶ Σ ⊧ τ} is r.e.:

Enumerate Σ = ⟨σ1, σ2, . . . , ⟩ and WFF = ⟨τ1, τ2, . . . , ⟩.
Try all τi and {σ1, σ2, . . . , σj}; if {σ1, σ2, . . . , σj} ⊧ τi , output τ .

If some {σ1, σ2, . . . , σj} ⊧ τi , then (obviously) Σ ⊧ τi , so output is always a
consequence.
If Σ ⊧ τi , then, by compactness, some {σ1, σ2, . . . , σj} ⊧ τi . So we don’t
miss any consequences.
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Overview

An R.E. Undecidable Set Implies Undecidable
Consequences

Let S ⊆ N be r.e. but not decidable, and let M enumerate S .

Then S ′ = {(n, t) ∶ M prints n in ≤ t steps} is decidable.

Let Σ = {
t

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
An ∧An ∧⋯ ∧An ∶ (n, t) ∈ S ′}; then Σ is decidable.

Σ ⊧ An iff ∃t M prints n in t steps—undecidable.
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Overview

Significance

We can not decide which wffs are the consequences of some “scenario”
specified by Σ, but we can enumerate those consequences (analogs of
“theorems” in first-order logic).
This narrowly characterizes the “wildness” of {τ ∶ Σ ⊧ τ}.
(Additional comments later.)
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Overview

We Seek the Truth

Why investigate Σ ⊧ τ for infinite, non-trivial Σ?
Consider

Tautologies, Σ = ∅. Since τ is finite, check ⊧ τ using truth tables.
Proving ⊧ τ amounts to finding a tautology—doing logic, not math.

Finite Σ = {σ1, σ2, . . . , σn}. Then Σ ⊧ τ iff ⊧ σ1 ∧⋯ ∧ σn → τ .

Suppose, for all i , either Ai ∈ Σ or ¬Ai ∈ Σ, decidably. Then Σ ⊧ τ iff
v satisfies τ for the truth assignment v induced by Σ. Showing Σ ⊧ τ
is showing this one v satisfies τ .

The interesting case: Infinite Σ. Several v ’s satisfy all σ ∈ Σ and several
v ’s do not. Showing Σ ⊧ τ says something (new?) about a large set of v ’s.
What is true in the theory of Σ?
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Overview

Example—Multiplication

⋯ A4 A0

⋯ A5 A1

⋯ A6 A2

⋯ A7

⋯
⋯ A8 A3

Σ can “say” that the above multiplication computation is correct, e.g.,
A2 ↔ A0 ∧A1, etc, for any factors.

What about the following τ?

τ = (A0 ↔ A1) ∧ (A4 ↔ A5)→ ¬A8

Σ ⊧ τ implies x2 mod 4 is congruent to 0 or 1. (02 = 22 = 0 and
12 = 32 = 1.)
This is true under any assigment to the sentence symbols making Σ
correct, and interesting.
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Overview

Not Always So Easy

⋯ A4 A0

⋯ A5 A1

⋯ A6 A2

⋯ A7

⋯ A8 A3

τ = (A0 ↔ A1) ∧ (A4 ↔ A5)→ ¬A8 = x2 ∈ {0,1} mod 4

Here, one can show that A8 depends only on A<8, i.e., A2,A6,A7 are
correct functions of A0,A1,A4,A5.

That is, there is a finite Σ0 ⊆ Σ, with Σ ⊧ τ iff Σ0 ⊧ τ .
By compactness, there’s always some Σ0, depending on τ .
There is no effective procedure, in general, to find Σ0.
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Overview

Example

Suppose τ = A1 and

Σ = {A2,A2 → A3 ∧A4,A3 → A16 ∧A13, . . .}.

Do we have Σ ⊧ τ?

A naive approach searches for a path from A2 to A1.
Insufficient to restrict attention to WFFs in Σ that mention A1.
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Compactness Theorem

Statement of Compactness

Theorem

A set Σ of WFFs is satisfiable iff every finite subset is satisfiable.

(Space of all truth assignments, under product topology, is compact.)
Interesting direction: If Σ is finitely satisfiable, then it is satisfiable.
Proof has two parts.

Enlarge Σ to ∆, a maximal such set.

Show that v(φ) = T iff φ ∈ ∆ works.
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Compactness Theorem

Hierarchy of Tautological Implication

Consider an increasing set of Σ’s that tautologicaly imply some τ .
Σ {v ∶ v ⊧ Σ} {τ ∶ Σ ⊧ τ} Case Name

∅ all v Tautologies Tautologies

{A,B ∨ ¬C} some v , Tautologies, and Finite
but not all e.g., A ∨D

Infinite some v , some τ , Interesting
but not all but not all

{A,B,C, . . .} one v {τ ∶ v(τ) = T} One v

{A,B,C, . . .} one v Σ Maximal
and consequences

All wffs no v ’s all wffs Inconsistent
(or just {A,¬A})

The interesting case is the case of Σ infinite, satisfied by some, but not all
v , and tautologically implying some, but not all, τ . Other cases are easy.
The compactness theorem will extend an “Interesting” Σ to a “Maximal”
Σ, that is easy to analyze.
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Compactness Theorem

Building a Maximal Set

Let ⟨α0, α1, . . . , ⟩ enumerate the WFFs.

Define

∆0 = Σ

∆i+1 = { ∆i ;αi if this is finitely satisfiable
∆i ;¬αi otherwise

Let ∆ = ⋃i ∆i . Then:

Σ ⊆ ∆

For any α, either α or ¬α is in ∆, by construction.

∆0 = Σ is finitely satisfiable. (Base case.)

All ∆>0 are finitely satisfiable. (Inductive case, next...)

∆ is finitely satisfiable (any finite ∆′ ⊆ ∆ is also a subset of some ∆i ).
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Compactness Theorem

All ∆i are finitely satisfiable

∆i+1 = { ∆i ;αi if this is finitely satisfiable
∆i ;¬αi otherwise

To show ∆i+1 is finitely satisfiable:

By induction, ∆i is finitely satisfiable.

If ∆i ;αi is finitely satisfiable, this is ∆i+1—done.

Otherwise, there’s there’s some finite, unsatisfiable ∆′′ ⊆ ∆i ;αi .
Since ∆i is finitely sastisfiable, ∆′′ /⊆ ∆i , so αi ∈ ∆′′ by induction.

Toward a contradiction, assume ∆′ is a finite, unsatisfiable subset of
∆i+1 = ∆i ;¬αi . Similar to the above, ¬αi ∈ ∆′.
∆̂ = (∆′ −¬αi)∪ (∆′′ −αi) ⊆ ∆i is satisfiable by induction, by some v .

If v(αi) = T , then v satisfies ∆̂;αi ⊇ ∆′′. Else v(¬αi) = T , and v
satisfies ∆̂;¬αi ⊇ ∆′.
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Compactness Theorem

Defining a Satisfying Assignment

Define v(A) = T iff A ∈ ∆ and extend to v .

Claim: v satisfies φ iff φ ∈ ∆.
By structural induction. E.g., suppose φ = ¬ψ. Then

v satisfies φ iff v does not satisfy ψ
iff ψ /∈ ∆
iff φ = ¬ψ ∈ ∆.

In particular, v satisfies Σ.
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Compactness Theorem

Corollary

An equivalent formulation:
Σ ⊧ τ iff there is a finite Σ0 ⊆ Σ with Σ0 ⊧ τ .

Compactness and Effectiveness 18/45



Recursion Theory / Enumerability of Consequences

Outline

1 Overview
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Recursion Theory / Enumerability of Consequences

Enumeration

http://dilbert.com/blank.html
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Recursion Theory / Enumerability of Consequences

Recursive Enumerability

A set S (of numbers, expressions, or WFFs) is recursively enumerable
(r.e.) if there is some computer program (machine) M that prints a
(possibly infinite) list that contains exactly the elements of S = L(M).

A set is semi-decidable if there is a computer program that, on input x ,
halts (and answers “yes”) or does not halt depending on whether x ∈ S or
x /∈ S , respectively.
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Recursion Theory / Enumerability of Consequences

Equivalence

Theorem

S is r.e. iff S is semi-decidable.

Proof.

(Harder direction): Suppose S is semi-decidable, by M. To enumerate S ,
try M(x0),M(x1), . . ., in interleaving processes, and output xi if M(xi)
accepts.
Interleaving processes: Proceed one step of M(x0) at time 1, 3, 5, 7,. . . .
Proceed one step of M(x1) at time 2, 6, 10, 14,. . . . Proceed one step of
M(xi) at time odd⋅2i .
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Recursion Theory / Enumerability of Consequences

Decidability

By contrast, a set S is decidable if a computer program that halts on
all inputs x outputs “yes” or “no” depending on whether x ∈ S .

There are sets that are not decidable. (Most of the uncountably-many
sets are not decidable by any of the countably-many computer
programs.)

There are sets that are r.e. but not decidable. (Later...)
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Recursion Theory / Enumerability of Consequences

Practical Analogy

TCP, a communications protocol underlying the web, requires:

If a server is normal, it must send an acknowledgement of clients’
packets.

If a server is overloaded, it must signal this by not sending
acknowledgements. (That may be all it can manage.)

(Im-)morally speaking, the set of times at which a server is normal is r.e.
but not decidable.
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Recursion Theory / Enumerability of Consequences

Tautological Consequences is R.E.

Theorem

If Σ is r.e., then so is the set Σ of its tautological consequences.

Proof.

Let Σ = ⟨σ1, σ2, . . . , ⟩ and WFF = ⟨τ1, τ2, . . . , ⟩.

Try all τi and {σ1, σ2, . . . , σj}
Output τi if {σ1, σ2, . . . , σj} ⊧ τi

How to try all? Next...
By compactness, some {σ1, σ2, . . . , σj} ⊧ τi , iff Σ ⊧ τi .
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Recursion Theory / Enumerability of Consequences

Busy Beaver

How to try all M(τi ,{σ1, . . . , σj})?

Enumerate all pairs of natural numbers.

f (i , j) 1 2 3 4

0 0 1 3 6
1 2 4 7
2 5 8

Interleave all processes: advance f (i , j) one step at time odd⋅2f (i ,j).

f (i , j) Times when f (i , j) is active

0 1,3,5,7,9,11,13,15, . . .
1 2,6,10,14, . . .
2 4,12, . . .
3 8, . . .
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Undecidability

Outline

1 Overview

2 Compactness Theorem

3 Recursion Theory / Enumerability of Consequences

4 Undecidability

5 True but Unprovable

Compactness and Effectiveness 27/45



Undecidability

The Reals are Uncountable

Suppose not. List the reals:
Position Real

1 .12345. . .
2 .67514. . .
3 .14159. . .

Let x differ from the diagonal by at least 2 in each position; e.g.,
x = .909 . . ..
x cannot be on the list.
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Undecidability

Diagonalization, Generally

Get an explicit transcendental number (not the root of any integer
polynomial) by diagonalization

List the integer polynomials (low degrees first; use pairing)

k poly roots

x ↓

1 3x − 1 1/3

9

2 4x2 − 1 ±1/2

0

3 5x − 4 .8

0

4 2x2 − 1 ±
√

1/2

0

⋮

Define k ’th digit of x to be 0 or 9 so that x is at least 2 ⋅ 10−k away
from any root of the k ’th polynomial, when k’th digit is chosen.
Here, x = 0.9000 . . .

However the lower-order bits are set, x is not the root of the k ’th
polynomial; it is at least 10−k away.
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Undecidability

Undecidability of the Halting and Related Problems

The Acceptance problem is given by

A = {(M, x) ∶ M(x) halts and M(x) = yes}

i.e., the set of (M, x) such that computer program (“machine”) M, when
run on input x , halts and answers yes.

E.g., a malware detector might want to decide A, by examining code for
M without running M.
Suppose there were a decider H for A, i.e.,

H(M, x) = { yes M(x) halts and M(x) = yes
no M(x) runs forever or M(x) = no
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Suppose there were a decider H for A, i.e.,

H(M, x) = { yes M(x) halts and M(x) = yes
no M(x) runs forever or M(x) = no
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Undecidability

Diagonalization

Situation:
A = {(M, x) ∶ M(x) halts and M(x) = yes}

H(M, x) = { yes M(x) halts and M(x) = yes
no M(x) runs forever or M(x) = no

Consider the program D(M) that simulates H(M,M) and returns the
opposite, i.e.,

D(M) = { yes H(M,M) = no
no H(M,M) = yes

D halts on all inputs, since H does.
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Undecidability

Punchline

We have A = {(M, x) ∶ M(x) halts and M(x) = yes},

H(M, x) = { yes M(x) halts and M(x) = yes
no M(x) runs forever or M(x) = no

and D(M) = ¬H(M,M).

What about D(D)?

D(D) = yes ⇒ H(D,D) = no

⇒ H(D,D) = no

⇒ D(D) runs forever or D(D) = no

and
D(D) = no ⇒ H(D,D) = yes

⇒ D(D) halts and D(D) = yes

Contradiction! Thus decider H does not exist. A is not decidable.

Compactness and Effectiveness 32/45



Undecidability

Punchline

We have A = {(M, x) ∶ M(x) halts and M(x) = yes},

H(M, x) = { yes M(x) halts and M(x) = yes
no M(x) runs forever or M(x) = no

and D(M) = ¬H(M,M). What about D(D)?

D(D) = yes ⇒ H(D,D) = no

⇒ H(D,D) = no

⇒ D(D) runs forever or D(D) = no

and
D(D) = no ⇒ H(D,D) = yes

⇒ D(D) halts and D(D) = yes

Contradiction! Thus decider H does not exist. A is not decidable.

Compactness and Effectiveness 32/45



Undecidability

Punchline

We have A = {(M, x) ∶ M(x) halts and M(x) = yes},

H(M, x) = { yes M(x) halts and M(x) = yes
no M(x) runs forever or M(x) = no

and D(M) = ¬H(M,M). What about D(D)?

D(D) = yes ⇒ H(D,D) = no

⇒ H(D,D) = no

⇒ D(D) runs forever or D(D) = no

and

D(D) = no ⇒ H(D,D) = yes

⇒ D(D) halts and D(D) = yes

Contradiction! Thus decider H does not exist. A is not decidable.

Compactness and Effectiveness 32/45



Undecidability

Punchline

We have A = {(M, x) ∶ M(x) halts and M(x) = yes},

H(M, x) = { yes M(x) halts and M(x) = yes
no M(x) runs forever or M(x) = no

and D(M) = ¬H(M,M). What about D(D)?

D(D) = yes ⇒ H(D,D) = no

⇒ H(D,D) = no

⇒ D(D) runs forever or D(D) = no

and
D(D) = no ⇒ H(D,D) = yes

⇒ D(D) halts and D(D) = yes

Contradiction! Thus decider H does not exist. A is not decidable.

Compactness and Effectiveness 32/45



Undecidability

...but r.e.

But A is r.e.: Semi-decider SA works as follows:

On input (M, x), run M(x).
If M halts and accepts x , then SA halts and accepts (M, x).
If M halts and rejects x , then SA runs forever.

If M runs forever, then SA runs forever.

Compactness and Effectiveness 33/45



Undecidability

...but r.e.

But A is r.e.: Semi-decider SA works as follows:
On input (M, x), run M(x).

If M halts and accepts x , then SA halts and accepts (M, x).
If M halts and rejects x , then SA runs forever.

If M runs forever, then SA runs forever.

Compactness and Effectiveness 33/45



Undecidability

...but r.e.

But A is r.e.: Semi-decider SA works as follows:
On input (M, x), run M(x).

If M halts and accepts x , then SA halts and accepts (M, x).

If M halts and rejects x , then SA runs forever.

If M runs forever, then SA runs forever.

Compactness and Effectiveness 33/45



Undecidability

...but r.e.

But A is r.e.: Semi-decider SA works as follows:
On input (M, x), run M(x).

If M halts and accepts x , then SA halts and accepts (M, x).
If M halts and rejects x , then SA runs forever.

If M runs forever, then SA runs forever.

Compactness and Effectiveness 33/45



Undecidability

...but r.e.

But A is r.e.: Semi-decider SA works as follows:
On input (M, x), run M(x).

If M halts and accepts x , then SA halts and accepts (M, x).
If M halts and rejects x , then SA runs forever.

If M runs forever, then SA runs forever.

Compactness and Effectiveness 33/45



Undecidability

Compare with Transcendentals

To produce transendental x , list integer polynomials and make sure the
k ’th polynomial p does not “accept” x , i.e., p(x) ≠ 0. To insure the
condition for pk , look at the k ’th bit of x .

To produce undecidable set A, list all machines and make sure machine M
does not decide A, i.e., there’s some input y on which M does not halt or
M(y)’s output doesn’t match A. To insure the condition for machine M,
look at the input y = M for machine M.
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Undecidability

Consequences are Undecidable

Suppose SA semi-decides A = {(M, x) ∶ M(x) halts and M(x) = yes}.

Pair n = (M, x).
Put A≤ = {(n, t) ∶ SA accepts (M, x) in ≤ t steps}. Then A≤ is
decidable.

Let Σ = {
t

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
An ∧An ∧⋯ ∧An ∶ (n, t) ∈ A≤}; then Σ is decidable.

Σ ⊧ An iff ∃t

t
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
An ∧An ∧⋯ ∧An ∈ Σ iff ∃t SA accepts (M, x) in t

steps iff (M, x) ∈ A—undecidable!
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True but Unprovable

Outline

1 Overview

2 Compactness Theorem

3 Recursion Theory / Enumerability of Consequences

4 Undecidability

5 True but Unprovable
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True but Unprovable

More is True...

We now show that there is a true but unprovable sentence in Boolean
logic.

(More importantly, we formulate this carefully!)
First, a bit more recursion theory.
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True but Unprovable

Recursive Inseparability

Two sets A and B are Recursively Inseparable if there is no decidable set
R with A ⊆ R and B ⊆ Rc .'
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%
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'

&
BR Rc
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True but Unprovable

Example Inseparable Sets

Theorem

The sets
LY = {M ∶ M(M) halts and M(M) = yes}
LN = {M ∶ M(M) halts and M(M) = no}

are recursively inseparable.

Proof.

Suppose wlog LN ⊆ R and R ∩ LY = ∅ with M deciding R. What is M(M)?
M(M) = yes ⇒ M ∈ LY, by def of LY

⇒ M /∈ R, since R ∩ LY = ∅
⇒ M(M) halts and says no, since M decides R.

Similar contradiction if M(M) = no.

Contradiction! No recursive separating R.
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True but Unprovable

Back to WFFs

Put

LY = {M ∶ M(M) = yes}
LY,≤ = {(M, t) ∶ M(M) = yes in ≤ t steps}

ΣY,≤ = {
t

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
AM ∧AM ∧⋯ ∧AM ∶ (M, t) ∈ LY,≤}

and
LN = {M ∶ M(M) = no}

LN,≤ = {(M, t) ∶ M(M) = no in ≤ t steps}

ΣN,≤ = {
t

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
AM ∧AM ∧⋯ ∧AM ∶ (M, t) ∈ LN,≤}

Then ΣY,≤ and ΣN,≤ are decidable.
Also, note M ∈ Li iff Σi ,≤ ⊧ AM , i =Y,N.
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³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
AM ∧AM ∧⋯ ∧AM ∶ (M, t) ∈ LY,≤}

and
LN = {M ∶ M(M) = no}

LN,≤ = {(M, t) ∶ M(M) = no in ≤ t steps}

ΣN,≤ = {
t

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
AM ∧AM ∧⋯ ∧AM ∶ (M, t) ∈ LN,≤}

Then ΣY,≤ and ΣN,≤ are decidable.
Also, note M ∈ Li iff Σi ,≤ ⊧ AM , i =Y,N.
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True but Unprovable

Inseparable

Note M ∈ Li iff Σi ,≤ ⊧ AM , i =Y,N.

Theorem

ΣY,≤ and ΣN,≤ are recursively inseparable.

Proof.

If some recursive R ′ separated ΣY,≤ and ΣN,≤, then R = {M ∶ AM ∈ R ′}
would separate LY and LN.
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True but Unprovable

Significance

Theorem

Suppose

v is any truth assignment such that v satisfies every σY ∈ ΣY,≤ and
satisfies no σN ∈ ΣN,≤; equivalently, v satisfies
Σ≤ = ΣY,≤ ∪ {¬σ ∶ σ ∈ ΣN,≤} (v is any reasonable notion of truth
compatible with Σ≤), and

C is any r.e. set that is closed under tautological implication and C ≠
WFF (C is any reasonable notion of proof).

Then there is a true but unprovable sentence.

Proof.

V = {σ ∶ v(σ) = T} is not decidable, so C ≠ V .

If V ⊆ C , then ∃σ ∈ V with σ ∈ C and ¬σ ∈ C .

Since C is closed, C = WFF. (Contradiction.)
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True but Unprovable

Picture
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True but Unprovable

Some [sic] notion of truth?

Some (different) examples:

1 v(AM) is true iff M(M) halts and says yes.

2 v(AM) is true unless M(M) halts and says no.

3 v(AM) is true iff M(M) halts and says yes, or if M(M) loops and ∣M ∣
is a prime number.
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True but Unprovable

Fix?

Suppose φ is true but unprovable. (Note: φ can be a sentence symbol.)
What about Σ≤;φ?

Σ≤;φ is decidable, since each of Σ≤ and {φ} is.

For each possible proof system C , there’s some other ψ, with
Σ≤;φ ⊧ ψ unprovable.

Throw in ψ, too?

Throwing in an r.e. set of ψ’s makes no qualitative progress.
Throwing in more than an r.e. set makes the new Σ not r.e.
(unreasonable).

Later, in first-order logic, the definition of AM becomes part of the logic.
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True but Unprovable

Where We Stand

Done with Boolean Logic (we’ll build on it, next)

Gave algorithms for

testing whether σ is a WFF

writing a Boolean function over {∧,¬}, but not over {∧,∨}, etc.

testing whether σ is true under v

Σ ⊧ σ for finite Σ.

For decidable Σ,

Σ ⊧ τ is recursively enumerable.

Σ ⊧ τ may not be decidable.

Reformulation:
For certain Σ, given any v compatible with Σ and any r.e., closed,
not-all-WFF proof system C , there is a true but unprovable sentence.
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