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© Overview
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Infinite?

“Given” an infinite set  of wffs and a single wff 7, can we “tell” whether
Y =77
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Four Big Results

o (Compactness.) X k= 7 iff for some finite £o € X, we have X k= 7.
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Four Big Results

o (Compactness.) X k= 7 iff for some finite £o € X, we have X k= 7.

@ Suppose X is recursively enumerable (i.e., a computer can print the
(possibly infinitely many) elements of ). Then the set of
tautological consequences of ¥ is also r.e.

@ There is a set S that is r.e. but not decidable (i.e., no computer that
halts on all inputs can, given x, determine whether x € S).

o There is a decidable set ¥ such that ¥ = {7: X & 7} is not decidable.
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Compactness Implies R.E. Consequences

Compactness implies {T: X =7} is r.e.:
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Compactness implies {T: X =7} is r.e.:
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e Try all 7 and {o1,09,...,0}}; if {o1,02,...,0;} £ 7;, output 7.
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Compactness implies {T: X =7} is r.e.:

e Enumerate ¥ = (01,02,...,) and WFF = (711, 72,...,).

e Try all 7 and {o1,09,...,0}}; if {o1,02,...,0;} £ 7;, output 7.
If some {01,02,...,0}} &= 7j, then (obviously) ¥ &= 7;, so output is always a
consequence.
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Overview

Compactness Implies R.E. Consequences

Compactness implies {T: X =7} is r.e.:
e Enumerate ¥ = (01,02,...,) and WFF = (711, 72,...,).
e Try all 7 and {o1,09,...,0}}; if {o1,02,...,0;} £ 7;, output 7.

If some {01,02,...,0}} &= 7j, then (obviously) ¥ &= 7;, so output is always a
consequence.

If > = 7;, then, by compactness, some {01,02,...,0;} £ 7;. So we don't
miss any consequences.
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Overview

An R.E. Undecidable Set Implies Undecidable
Consequences

@ Let Sc N be r.e. but not decidable, and let M enumerate S.
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@ Let Sc N be r.e. but not decidable, and let M enumerate S.
@ Then S"={(n,t): M prints n in < t steps} is decidable.
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Overview

An R.E. Undecidable Set Implies Undecidable
Consequences

@ Let Sc N be r.e. but not decidable, and let M enumerate S.
@ Then S"={(n,t): M prints n in < t steps} is decidable.

t

o Llet X ={A,AA,A--AA,:(n,t)eS}; then T is decidable.
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Overview

An R.E. Undecidable Set Implies Undecidable
Consequences

@ Let Sc N be r.e. but not decidable, and let M enumerate S.

@ Then S"={(n,t): M prints n in < t steps} is decidable.
t

o Let X={A,AAA--AA,:(n,t)eS}; then X is decidable.
@ X A, iff 3t M prints n in t steps—undecidable.
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Overview

Significance

We can not decide which wffs are the consequences of some “scenario”
specified by ¥, but we can enumerate those consequences (analogs of
“theorems” in first-order logic).

This narrowly characterizes the “wildness” of {7: X = 7}.

(Additional comments later.)
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We Seek the Truth

Why investigate ¥ & 7 for infinite, non-trivial X7
Consider
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o Tautologies, X = &. Since 7 is finite, check E 7 using truth tables.
Proving = 7 amounts to finding a tautology—doing logic, not math.
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Why investigate ¥ & 7 for infinite, non-trivial X7
Consider
o Tautologies, X = &. Since 7 is finite, check E 7 using truth tables.
Proving = 7 amounts to finding a tautology—doing logic, not math.
e Finite ¥ = {01,092,...,0n}. Then LT iff Eo1 A AT > T.
@ Suppose, for all i, either A; € ¥ or —-A; € X, decidably. Then X & 7 iff

v satisfies 7 for the truth assignment v induced by ¥. Showing X = 7
is showing this one v satisfies 7.
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We Seek the Truth

Why investigate ¥ & 7 for infinite, non-trivial X7
Consider
o Tautologies, X = &. Since 7 is finite, check E 7 using truth tables.
Proving = 7 amounts to finding a tautology—doing logic, not math.
e Finite ¥ = {01,092,...,0n}. Then LT iff Eo1 A AT > T.
@ Suppose, for all i, either A; € ¥ or —-A; € X, decidably. Then X & 7 iff

v satisfies 7 for the truth assignment v induced by ¥. Showing X = 7
is showing this one v satisfies 7.

The interesting case: Infinite . Several v's satisfy all o € ¥ and several
v's do not. Showing ¥ = 7 says something (new?) about a large set of v's.
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We Seek the Truth

Why investigate ¥ & 7 for infinite, non-trivial X7
Consider

o Tautologies, X = &. Since 7 is finite, check E 7 using truth tables.
Proving = 7 amounts to finding a tautology—doing logic, not math.
e Finite ¥ = {01,092,...,0n}. Then LT iff Eo1 A AT > T.

@ Suppose, for all i, either A; € ¥ or —-A; € X, decidably. Then X & 7 iff
v satisfies 7 for the truth assignment v induced by ¥. Showing X = 7
is showing this one v satisfies 7.

The interesting case: Infinite . Several v's satisfy all o € ¥ and several

v's do not. Showing ¥ = 7 says something (new?) about a large set of v's.
What is true in the theory of >7
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Overview

Example—Multiplication

> can “say” that the above multiplication computation is correct, e.g.,

A, < Ag A Aq, etc, for any factors.
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Example—Multiplication

A, A,

. As A;
As A
A7

As A;
> can “say” that the above multiplication computation is correct, e.g.,
A, < Ag A Aq, etc, for any factors.
What about the following 77

T = (Ao(—)Al)/\(A4<—>A5)—)—|A8
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Example—Multiplication

A, Ag
 As A
As A;

As A;
> can “say” that the above multiplication computation is correct, e.g.,
A, < Ag A Aq, etc, for any factors.
What about the following 77

T = (Ao(—)Al)/\(A4<—>A5)—)—|A8

Y = 7 implies x?> mod 4 is congruent to 0 or 1. (0% =22 =0 and
12=32=1)

Compactness and Effectiveness 9/45



Overview

Example—Multiplication

> can “say” that the above multiplication computation is correct, e.g.,

A, < Ag A Aq, etc, for any factors.
What about the following 77

T = (Ao(—)Al)/\(A4<—>A5)—)—|A8

Y = 7 implies x?> mod 4 is congruent to 0 or 1. (0% =22 =0 and

12=32=1)

This is true under any assigment to the sentence symbols making X

correct, and interesting.
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Overview

Not Always So Easy

7=(Ag < A1) A (As < As) > -Ag=x2€{0,1} mod 4

Here, one can show that Ag depends only on A_g, i.e., Ay, Ag, A7 are

correct functions of Ag, A1, Ay, As.
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7=(Ag < A1) A (As < As) > -Ag=x2€{0,1} mod 4

Here, one can show that Ag depends only on A_g, i.e., Ay, Ag, A7 are

correct functions of Ag, A1, Ay, As.

That is, there is a finite g € X, with X =7 iff X9 E 7.
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Not Always So Easy

A, Ag
Ay A

As A
Ay

Ag A3

7=(Ag < A1) A (As < As) > -Ag=x2€{0,1} mod 4

Here, one can show that Ag depends only on A_g, i.e., Ay, Ag, A7 are
correct functions of Ag, A1, Ay, As.

That is, there is a finite Xg € X, with ¥ = 7 iff g E 7.

By compactness, there's always some Y, depending on 7.
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Overview

Not Always So Easy

7=(Ag < A1) A (As < As) > -Ag=x2€{0,1} mod 4

Here, one can show that Ag depends only on A_g, i.e., Ay, Ag, A7 are

correct functions of Ag, A1, Ay, As.

That is, there is a finite Xg € X, with ¥ = 7 iff g E 7.
By compactness, there's always some Y, depending on 7.
There is no effective procedure, in general, to find Xg.

Compactness and Effectiveness
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Example

Suppose 7 = A1 and
2 = {AQ,AQ — A3 A A4,A3 - A16 A A137 .. }

Do we have =77
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Overview

Example

Suppose 7 = A1 and

ZZ{AQ,AQ%A3/\A4,A3—>A16/\A13,... .

Do we have X = 77
A naive approach searches for a path from A, to A;.
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Overview

Example

Suppose 7 = A1 and

2 = {AQ,AQ — A3 /\A4,A3 - A16/\A13,...}.

Do we have =77

A naive approach searches for a path from A, to A;.
Insufficient to restrict attention to WFFs in ¥ that mention A;.
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Outline

© Compactness Theorem
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Statement of Compactness

Theorem
A set ¥ of WFFs is satisfiable iff every finite subset is satisfiable.
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(Space of all truth assignments, under product topology, is compact.)
Interesting direction: If X is finitely satisfiable, then it is satisfiable.
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Compactness Theorem

Statement of Compactness

Theorem

A set ¥ of WFFs is satisfiable iff every finite subset is satisfiable.

(Space of all truth assignments, under product topology, is compact.)

Interesting direction: If X is finitely satisfiable, then it is satisfiable.
Proof has two parts.

o Enlarge X to A, a maximal such set.
@ Show that v(¢) = T iff ¢ € A works.
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Compactness Theorem

Hierarchy of Tautological Implication

Consider an increasing set of ¥'s that tautologicaly imply some 7.

X [ {vivexr} [{r:ZE7} | Case Name
1) all v Tautologies Tautologies
{A,BvVv-C} some v, Tautologies, and | Finite

but notall | eg., AvD
Infinite some v, some T, Interesting
but not all | but not all
{A,B,C,...} one v {T:v(r)=T} One v
{A,B,C,...} one v pu Maximal
and consequences
All wffs no v's all wffs Inconsistent
(or just {A,-A})
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Hierarchy of Tautological Implication

Consider an increasing set of ¥'s that tautologicaly imply some 7.

X [ {vivexr} [{r:ZE7} | Case Name
1) all v Tautologies Tautologies
{A,BvVv-C} some v, Tautologies, and | Finite

but notall | eg., AvD
Infinite some v, some T, Interesting
but not all | but not all
{A,B,C,...} one v {T:v(r)=T} One v
{A,B,C,...} one v pu Maximal
and consequences
All wffs no v's all wffs Inconsistent
(or just {A,-A})

The interesting case is the case of X infinite, satisfied by some, but not all
v, and tautologically implying some, but not all, 7. Other cases are easy.
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Hierarchy of Tautological Implication

Consider an increasing set of ¥'s that tautologicaly imply some 7.

X [ {vivexr} [{r:ZE7} | Case Name
1) all v Tautologies Tautologies
{A,BvVv-C} some v, Tautologies, and | Finite

but notall | eg., AvD
Infinite some v, some T, Interesting
but not all | but not all
{A,B,C,...} one v {T:v(r)=T} One v
{A,B,C,...} one v pu Maximal
and consequences
All wffs no v's all wffs Inconsistent
(or just {A,-A})

The interesting case is the case of X infinite, satisfied by some, but not all
v, and tautologically implying some, but not all, 7. Other cases are easy.
The compactness theorem will extend an “Interesting” ¥ to a “Maximal”

2, that is easy to analyze.
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Building a Maximal Set

Let («p,q,...,) enumerate the WFFs.
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Building a Maximal Set

Let («p,q,...,) enumerate the WFFs. Define

Ny = X
A _ A «; if this is finitely satisfiable
i+l Aj; -« otherwise

Let A =U; A;. Then:
e XCA
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Let («p,q,...,) enumerate the WFFs. Define
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i+l Aj; -« otherwise
Let A =U; A;. Then:
e YCA

e For any «, either a or -~ is in A, by construction.
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Building a Maximal Set

Let («p,q,...,) enumerate the WFFs. Define

Aoy = X
A { Aj;o;  if this is finitely satisfiable
i+l Aj; -« otherwise
Let A =U; A;. Then:
e YXcA
@ For any «, either a or -« is in A, by construction.

e Ap =X is finitely satisfiable. (Base case.)
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Building a Maximal Set

Let («p,q,...,) enumerate the WFFs. Define

Aoy = X
A { Aj;o;  if this is finitely satisfiable
i+l Aj; -« otherwise
Let A =U; A;. Then:
e YXcA
@ For any «, either a or -« is in A, by construction.
e Ap =X is finitely satisfiable. (Base case.)
°

All A.g are finitely satisfiable. (Inductive case, next...)
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Building a Maximal Set

Let («p,q,...,) enumerate the WFFs. Define

Ny = X
A _ A «; if this is finitely satisfiable
i+l Aj; -« otherwise

Let A =U; A;. Then:
e XCA

For any «, either o or -« is in A, by construction.

°
e Ap =X is finitely satisfiable. (Base case.)

o All A,y are finitely satisfiable. (Inductive case, next...)
°

A is finitely satisfiable (any finite A’ ¢ A is also a subset of some A)).
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All A; are finitely satisfiable

{ Aj;«; if this is finitely satisfiable
Ajr

A;;-«a; otherwise

To show Aj,1 is finitely satisfiable:

@ By induction, Aj; is finitely satisfiable.

Compactness and Effectiveness

16/45



All A; are finitely satisfiable

{ Aj;«; if this is finitely satisfiable
Ajr

A;;-«a; otherwise

To show Aj,1 is finitely satisfiable:

@ By induction, Aj; is finitely satisfiable.
o If Aj; «; is finitely satisfiable, this is A;,;—done.
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All A; are finitely satisfiable

{ Aj;«; if this is finitely satisfiable
Ajr

A;;-«a; otherwise

To show Aj,1 is finitely satisfiable:

@ By induction, Aj; is finitely satisfiable.
o If Aj; «; is finitely satisfiable, this is A;,;—done.

@ Otherwise, there's there's some finite, unsatisfiable A” € A;; ;.
Since A, is finitely sastisfiable, A" ¢ A;, so a; € A” by induction.
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All A; are finitely satisfiable
Ajr

Aj;«; if this is finitely satisfiable
A;; —«; otherwise

To show Aj,1 is finitely satisfiable:
@ By induction, Aj; is finitely satisfiable.
o If Aj; «; is finitely satisfiable, this is A;,;—done.

@ Otherwise, there's there's some finite, unsatisfiable A” € A;; ;.
Since A, is finitely sastisfiable, A" ¢ A;, so a; € A” by induction.

@ Toward a contradiction, assume A’ is a finite, unsatisfiable subset of
A1 = Aj; . Similar to the above, —aj € A'.
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All A; are finitely satisfiable
Ajr

Aj;«; if this is finitely satisfiable
A;; —«; otherwise

To show Aj,1 is finitely satisfiable:
@ By induction, Aj; is finitely satisfiable.
o If Aj; «; is finitely satisfiable, this is A;,;—done.

@ Otherwise, there's there's some finite, unsatisfiable A” € A;; ;.
Since A, is finitely sastisfiable, A" ¢ A;, so a; € A” by induction.

@ Toward a contradiction, assume A’ is a finite, unsatisfiable subset of
A1 = Aj; . Similar to the above, —aj € A'.

o A= (A"--a;)U(A"-a;) c A is satisfiable by induction, by some V.
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All A; are finitely satisfiable
Ajr

Aj;«; if this is finitely satisfiable
A;; —«; otherwise

To show Aj,1 is finitely satisfiable:

@ By induction, Aj; is finitely satisfiable.

o If Aj; «; is finitely satisfiable, this is A;,;—done.

@ Otherwise, there's there's some finite, unsatisfiable A” € A;; ;.
Since A, is finitely sastisfiable, A" ¢ A;, so a; € A” by induction.

@ Toward a contradiction, assume A’ is a finite, unsatisfiable subset of
A1 = Aj; . Similar to the above, —aj € A'.

o A= (A"--a;)U(A"-a;) c A is satisfiable by induction, by some V.

o If v(a;) iT’ then V satisfies A; ; 2 A”. Else V(-a;j) =T, and v
satisfies A; —a; 2 A'.
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Defining a Satisfying Assignment

Define v(A) = T iff A € A and extend to v.
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Defining a Satisfying Assignment

Define v(A) = T iff A € A and extend to v.
Claim: Vv satisfies ¢ iff ¢ € A.
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Compactness Theorem

Defining a Satisfying Assignment

Define v(A) = T iff A € A and extend to v.
Claim: Vv satisfies ¢ iff ¢ € A.
By structural induction. E.g., suppose ¢ = —1». Then

Compactness and Effectiveness 17/45



Compactness Theorem

Defining a Satisfying Assignment

Define v(A) = T iff A € A and extend to v.
Claim: Vv satisfies ¢ iff ¢ € A.
By structural induction. E.g., suppose ¢ = —1». Then
v satisfies ¢ iff vV does not satisfy ¥
iff ¢A
iff  ¢=-1eA.
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Compactness Theorem

Defining a Satisfying Assignment

Define v(A) = T iff A € A and extend to v.
Claim: Vv satisfies ¢ iff ¢ € A.
By structural induction. E.g., suppose ¢ = —1». Then
v satisfies ¢ iff vV does not satisfy ¥
iff ¢A
iff  ¢=-1eA.
In particular, v satisfies X.

Compactness and Effectiveness
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Corollary

An equivalent formulation:
Y E 7 iff there is a finite X € L with XgE 7.
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Recursion Theory / Enumerability of Consequences

© Recursion Theory / Enumerability of Consequences
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Recursion Theory / Enumerability of Consequences

Enumeration
http://dilbert.cor

WELL? WHAT D0 1 ONCE READ THAT GIVEN BUT WHAT ABOUT

YOU THINK OF MY INFINITE TIME, A 1Y POEM ?

NEW POEM ? THOUSAND MONKEYS WITH .
»  TYPEWRITERS WOULD

/ §  EVENTUALLY WRITE THE
1 ENTIRE WORKS OF THREE MONKEYS,
| SHAKESPEARE. TEN MINUTES.
P ‘
} %@ |
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Recursion Theory / Enumerability of Consequences

Recursive Enumerability

A set S (of numbers, expressions, or WFFs) is recursively enumerable
(r.e.) if there is some computer program (machine) M that prints a
(possibly infinite) list that contains exactly the elements of S = L(M).
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Recursion Theory / Enumerability of Consequences

Recursive Enumerability

A set S (of numbers, expressions, or WFFs) is recursively enumerable
(r.e.) if there is some computer program (machine) M that prints a
(possibly infinite) list that contains exactly the elements of S = L(M).

A set is semi-decidable if there is a computer program that, on input x,

halts (and answers "yes") or does not halt depending on whether x € S or
x ¢S, respectively.
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Equivalence

Theorem
S is r.e. iff S is semi-decidable.
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Recursion Theory / Enumerability of Consequences

Equivalence

Theorem

S is r.e. iff S is semi-decidable.

Proof.

(Harder direction): Suppose S is semi-decidable, by M. To enumerate S,
try M(x0), M(x1), ..., in interleaving processes, and output x; if M(x;)
accepts.
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Equivalence

Theorem
S is r.e. iff S is semi-decidable.

Proof.

(Harder direction): Suppose S is semi-decidable, by M. To enumerate S,
try M(x0), M(x1), ..., in interleaving processes, and output x; if M(x;)
accepts.

Interleaving processes: Proceed one step of M(xp) at time 1, 3,5, 7,....
Proceed one step of M(Xl) at time 2, 6, 10, 14,.... Proceed one step of
M(x;) at time odd-2'. O

v
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Decidability

@ By contrast, a set S is decidable if a computer program that halts on
all inputs x outputs “yes” or “no” depending on whether x € S.
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Decidability

@ By contrast, a set S is decidable if a computer program that halts on
all inputs x outputs “yes” or “no” depending on whether x € S.

@ There are sets that are not decidable. (Most of the uncountably-many
sets are not decidable by any of the countably-many computer

programs.)
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Decidability

@ By contrast, a set S is decidable if a computer program that halts on
all inputs x outputs “yes” or “no” depending on whether x € S.

@ There are sets that are not decidable. (Most of the uncountably-many
sets are not decidable by any of the countably-many computer
programs.)

@ There are sets that are r.e. but not decidable. (Later...)

Compactness and Effectiveness 23/45



Recursion Theory / Enumerability of Consequences

Practical Analogy

TCP, a communications protocol underlying the web, requires:

o If a server is normal, it must send an acknowledgement of clients’
packets.

@ If a server is overloaded, it must signal this by not sending
acknowledgements. (That may be all it can manage.)

(Im-)morally speaking, the set of times at which a server is normal is r.e.
but not decidable.
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Recursion Theory / Enumerability of Consequences

Tautological Consequences is R.E.

Theorem

If ¥ is r.e., then so is the set *. of its tautological consequences.

Proof.
o letYy = <O’1,0‘2,...,> and WFF = <7'1,7'2,...,>.

Compactness and Effectiveness 25/45



Recursion Theory / Enumerability of Consequences

Tautological Consequences is R.E.

Theorem

If ¥ is r.e., then so is the set *. of its tautological consequences.

Proof.
o letYy = <O’1,0‘2,...,> and WFF = <7'1,7'2,...,>.

o Try all 7 and {01,092,...,0;}
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Recursion Theory / Enumerability of Consequences

Tautological Consequences is R.E.

Theorem

If ¥ is r.e., then so is the set *. of its tautological consequences.

Proof.
o Let ¥ =(01,02,...,) and WFF = (1, 72,...,).
o Try all 7 and {01,092,...,0;}
e Output 7; if {01,00,...,0/} =T
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Recursion Theory / Enumerability of Consequences

Tautological Consequences is R.E.

Theorem

If ¥ is r.e., then so is the set *. of its tautological consequences.

Proof.
o Let ¥ =(01,02,...,) and WFF = (1, 72,...,).
o Try all 7 and {01,092,...,0;}
e Output 7; if {01,00,...,0/} =T

How to try all? Next...
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Recursion Theory / Enumerability of Consequences

Tautological Consequences is R.E.

Theorem

If ¥ is r.e., then so is the set *. of its tautological consequences.

Proof.
o Let ¥ =(01,02,...,) and WFF = (1, 72,...,).
o Try all 7 and {01,092,...,0;}
e Output 7; if {01,00,...,0/} =T
How to try all? Next...
By compactness, some {o1,02,...,0;} £ 7, iff X =7 O
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Busy Beaver

How to try all M(7;,{o1,... 7Uj})?
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Busy Beaver

How to try all M(7;,{o1,... ,Uj})?
Enumerate all pairs of natural numbers.

f(i,j)|1 2 3 4
0 |01 36
1 |2 47
2 |5 8
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Busy Beaver

How to try all M(7;,{o1,... ,Uj})?
Enumerate all pairs of natural numbers.

f(i,j)|1 2 3 4
0 |01 36
1 |2 47
2 |5 8

Interleave all processes: advance f(i,j) one step at time odd-2f (1),

f(i,J) ‘ Times when f(i,/) is active

0 1,3,5,7,9,11,13,15, . ..
1 2,6,10,14, ...

2 4,12, ...

3 8,...
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Outline

@ Undecidability
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The Reals are Uncountable

Suppose not. List the reals:
Poﬁﬂon‘ Real

1 .12345. ..
2 .67514. ..
3 .14159. ..
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The Reals are Uncountable

Suppose not. List the reals:
Position ‘ Real

1 .12345. ..
2 .67514. ..
3 .14159. ..

Let x differ from the diagonal by at least 2 in each position; e.g.,
x=.909....
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The Reals are Uncountable

Suppose not. List the reals:
Position ‘ Real

1 .12345. ..
2 .67514. ..
3 .14159. ..

Let x differ from the diagonal by at least 2 in each position; e.g.,
x=.909....
x cannot be on the list.
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Diagonalization, Generally

@ Get an explicit transcendental number (not the root of any integer
polynomial) by diagonalization
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Undecidability

Diagonalization, Generally

@ Get an explicit transcendental number (not the root of any integer
polynomial) by diagonalization
o List the integer polynomials (low degrees first; use pairing)

k| poly ‘ roots ‘

1[3x-1] 1/3
2| 4x® -1 #1/2
3| bx-4 .8
4 |2x2 -1 +/1)2
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Undecidability

Diagonalization, Generally

@ Get an explicit transcendental number (not the root of any integer
polynomial) by diagonalization
o List the integer polynomials (low degrees first; use pairing)

k poly ‘ roots ‘xi

13x-1] 1/3 | 9
2 |4x®2-1| #1/2 | 0
3|5x-4| .8 0
412x2-1|+/1/2| 0

o Define k'th digit of x to be 0 or 9 so that x is at least 2- 107 away
from any root of the k'th polynomial, when k'th digit is chosen.
Here, x =0.9000...
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Undecidability

Diagonalization, Generally

@ Get an explicit transcendental number (not the root of any integer
polynomial) by diagonalization
o List the integer polynomials (low degrees first; use pairing)

k poly ‘ roots ‘xi

13x-1] 1/3 | 9
2 |4x®2-1| #1/2 | 0
3|5x-4| .8 0
412x2-1|+/1/2| 0

o Define k'th digit of x to be 0 or 9 so that x is at least 2- 107 away
from any root of the k'th polynomial, when k'th digit is chosen.
Here, x =0.9000...

@ However the lower-order bits are set, x is not the root of the k'th
polynomial; it is at least 107% away.
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Undecidability of the Halting and Related Problems
The Acceptance problem is given by
A={(M,x): M(x) halts and M(x) = yes}

i.e., the set of (M, x) such that computer program (“machine”) M, when
run on input x, halts and answers yes.
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Undecidability

Undecidability of the Halting and Related Problems

The Acceptance problem is given by
A={(M,x): M(x) halts and M(x) = yes}

i.e., the set of (M, x) such that computer program (“machine”) M, when
run on input x, halts and answers yes.

E.g., a malware detector might want to decide A, by examining code for
M without running M.
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Undecidability of the Halting and Related Problems

The Acceptance problem is given by
A={(M,x): M(x) halts and M(x) = yes}

i.e., the set of (M, x) such that computer program (“machine”) M, when
run on input x, halts and answers yes.

E.g., a malware detector might want to decide A, by examining code for
M without running M.

Suppose there were a decider H for A, i.e.,

_ | yes M(x) halts and M(x) = yes
H(M, x) = { no M(x) runs forever or M(x) = no
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Diagonalization

Situation:
A={(M,x): M(x) halts and M(x) = yes}

yes M(x) halts and M(x) = yes
no M(x) runs forever or M(x) = no

H(M,x) = {
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Diagonalization
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A={(M,x): M(x) halts and M(x) = yes}

_ | yes M(x) halts and M(x) = yes
H(M,x) = { no M(x) runs forever or M(x) = no

Consider the program D(M) that simulates H(M, M) and returns the
opposite, i.e.,
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H(M,x) = { no M(x) runs forever or M(x) = no
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Diagonalization

Situation:
A={(M,x): M(x) halts and M(x) = yes}
_ | yes M(x) halts and M(x) = yes
H(M,x) = { no M(x) runs forever or M(x) = no

Consider the program D(M) that simulates H(M, M) and returns the
opposite, i.e.,

yes H(M,M) =no
D(M) :{ no H(M,M) =yes

D halts on all inputs, since H does.
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Punchline

We have A= {(M,x): M(x) halts and M(x) = yes},

yes M(x) halts and M(x) = yes
no M(x) runs forever or M(x) = no

H(M,x) = {

and D(M) = =H(M, M).
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Punchline

We have A= {(M,x): M(x) halts and M(x) = yes},

yes M(x) halts and M(x) = yes
no M(x) runs forever or M(x) = no

H(M,x) = {

and D(M) = -H(M, M). What about D(D)?
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Punchline
We have A= {(M,x): M(x) halts and M(x) = yes},

_ | yes M(x) halts and M(x) = yes
H(M, x) = { no M(x) runs forever or M(x) = no
and D(M) = -H(M, M). What about D(D)?

D(D)=yes = H(D,D)=no
= H(D,D)=no
= D(D) runs forever or D(D) = no

and
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Punchline

We have A= {(M,x): M(x) halts and M(x) = yes},

yes M(x) halts and M(x) = yes
no M(x) runs forever or M(x) = no

H(M,x) = {

and D(M) = -H(M, M). What about D(D)?

D(D)=yes = H(D,D)=no
= H(D,D)=no
= D(D) runs forever or D(D) = no

and
D(D)=no = H(D,D) =yes

= D(D) halts and D(D) = yes

Contradiction! Thus decider H does not exist. ’A is not decidable.
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...but r.e.

But A is r.e.: Semi-decider 54 works as follows:
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But A is r.e.: Semi-decider 54 works as follows:
On input (M, x), run M(x).
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...but r.e.

But A is r.e.: Semi-decider 54 works as follows:

On input (M, x), run M(x).
e If M halts and accepts x, then S halts and accepts (M, x).

Compactness and Effectiveness 33/45



...but r.e.
But A is r.e.: Semi-decider 54 works as follows:
On input (M, x), run M(x).

e If M halts and accepts x, then S halts and accepts (M, x).

o If M halts and rejects x, then S4 runs forever.
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...but r.e.

But A is r.e.: Semi-decider 54 works as follows:

On input (M, x), run M(x).
e If M halts and accepts x, then S halts and accepts (M, x).
o If M halts and rejects x, then S4 runs forever.

@ If M runs forever, then S4 runs forever.
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Undecidability

Compare with Transcendentals

To produce transendental x, list integer polynomials and make sure the
k'th polynomial p does not “accept” x, i.e., p(x) #0. To insure the
condition for py, look at the k'th bit of x.
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Undecidability

Compare with Transcendentals

To produce transendental x, list integer polynomials and make sure the
k'th polynomial p does not “accept” x, i.e., p(x) #0. To insure the
condition for py, look at the k'th bit of x.

To produce undecidable set A, list all machines and make sure machine M
does not decide A, i.e., there's some input y on which M does not halt or
M(y)'s output doesn't match A. To insure the condition for machine M,
look at the input y = M for machine M.
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Consequences are Undecidable

@ Suppose Sy semi-decides A= {(M,x) : M(x) halts and M(x) = yes}.
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Consequences are Undecidable

@ Suppose Sy semi-decides A= {(M,x) : M(x) halts and M(x) = yes}.
e Pair n=(M,x).
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Undecidability

Consequences are Undecidable

@ Suppose Sy semi-decides A= {(M,x) : M(x) halts and M(x) = yes}.
e Pair n=(M,x).

@ Put Ac ={(n,t):Sp accepts (M, x) in < t steps}. Then A. is
decidable.
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Undecidability

Consequences are Undecidable

@ Suppose Sy semi-decides A= {(M,x) : M(x) halts and M(x) = yes}.

e Pair n=(M,x).

@ Put Ac ={(n,t):Sp accepts (M, x) in < t steps}. Then A. is
decidable.

t

o Let X ={A,AA A--AA,:(n t)eA}; then T is decidable.
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Consequences are Undecidable

@ Suppose Sy semi-decides A= {(M,x) : M(x) halts and M(x) = yes}.
e Pair n=(M,x).

@ Put Ac ={(n,t):Sp accepts (M, x) in < t steps}. Then A. is
decidable.

t

o Let X ={A,AA A--AA,:(n t)eA}; then T is decidable.
t
e X =A,iff It AyAAL A~ AA, e X iff 3t Sp accepts (M, x) in t
steps iff (M, x) € A—undecidable!
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Outline

© True but Unprovable
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More is True...

We now show that there is a true but unprovable sentence in Boolean
logic.
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True but Unprovable

More is True...

We now show that there is a true but unprovable sentence in Boolean
logic.

(More importantly, we formulate this carefully!)
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True but Unprovable

More is True...

We now show that there is a true but unprovable sentence in Boolean
logic.

(More importantly, we formulate this carefully!)
First, a bit more recursion theory.
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Recursive Inseparability

Two sets A and B are Recursively Inseparable if there is no decidable set
R with Ac R and B c R°.

B

Compactness and Effectiveness 38/45




True but Unprovable

Example Inseparable Sets

Theorem

The sets
Ly

Ly

{M: M(M) halts and M(M) = yes}
{M: M(M) halts and M(M) = no}

are recursively inseparable.

Proof.
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Example Inseparable Sets

Theorem
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{M: M(M) halts and M(M) = yes}
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are recursively inseparable.

Proof.
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True but Unprovable

Example Inseparable Sets

Theorem

The sets
Ly

Ly

{M: M(M) halts and M(M) = yes}
{M: M(M) halts and M(M) = no}

are recursively inseparable.

Proof.
Suppose wlog Ly € R and Rn Ly = @ with M deciding R. What is M(M)?
M(M) = yes = M e Ly, by def of Ly
= M¢R, since Rnly =9
= M(M) halts and says no, since M decides R.
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True but Unprovable

Example Inseparable Sets

Theorem

The sets
Ly

Ly

{M: M(M) halts and M(M) = yes}
{M: M(M) halts and M(M) = no}

are recursively inseparable.

Proof.

Suppose wlog Ly € R and Rn Ly = @ with M deciding R. What is M(M)?
M(M) = yes = M e Ly, by def of Ly
= M¢R, since Rnly =9
= M(M) halts and says no, since M decides R.

Similar contradiction if M(M) = no.
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True but Unprovable

Example Inseparable Sets

Theorem

The sets
Ly

Ly

{M: M(M) halts and M(M) = yes}
{M: M(M) halts and M(M) = no}

are recursively inseparable.

Proof.

Suppose wlog Ly € R and Rn Ly = @ with M deciding R. What is M(M)?
M(M) = yes = M e Ly, by def of Ly
= M¢R, since Rnly =9
= M(M) halts and says no, since M decides R.

Similar contradiction if M(M) = no.
Contradiction! | No recursive separating R. O
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Back to WFFs

Put
Ly = {M:M(M)- yes}
Ly< = {(M,t): M(M) = yes in <t steps}
t
ZY,S = {AyAApyA-—AAy: (M t)e LY,S}

Compactness and Effectiveness 40/45



Back to WFFs

Put
Ly = {M:M(M)- yes}
Ly< = {(M,t): M(M) = yes in <t steps}
t
ZY,S = {AyAApyA-—AAy: (M t)e LY,S}
and

Ly = {M:M(M)= no}
In<e = {(M,t): M(M) = noin <t steps}

t

Ine = {AuAAyA-AAy: (M t)elnc)
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Back to WFFs

Put
Ly = {M:M(M)- yes}
Ly< = {(M,t): M(M) = yes in <t steps}
t
ZY,S = {AyAApyA-—AAy: (M t)e LY,S}
and

Ly = {M:M(M)= no}
In<e = {(M,t): M(M) = noin <t steps}

t

Ine = {AuAAyA-AAy: (M t)elnc)

Then Yy < and X < are decidable.
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Back to WFFs

Put
Ly = {M:M(M)- yes}
Ly< = {(M,t): M(M) = yes in <t steps}
t
ZY,S = {AyAApyA-—AAy: (M t)e LY,S}
and

Ly = {M:M(M)= no}
In<e = {(M,t): M(M) = noin <t steps}

t

Ine = {AuAAyA-AAy: (M t)elnc)

Then Yy < and X < are decidable.
Also, note M e L; iff X; c = Ay, i =Y,N.
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True but Unprovable

Inseparable

Note M e L; iff X; c E Ay, i =Y ,N.
Theorem

Yy< and X< are recursively inseparable.

Proof.

If some recursive R’ separated Xy < and X, then R={M: Ay e R'}
would separate Ly and Ly. O

v
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Significance

Theorem
Suppose
@ v is any truth assignment such that v satisfies every oy € Yy < and
satisfies no o € L <; equivalently, v satisfies
Y. =Yycu{-0c:0eXn<} (v isany reasonable notion of truth
compatible with X..), and
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Significance

Theorem
Suppose
@ v is any truth assignment such that v satisfies every oy € Yy < and
satisfies no o € L <; equivalently, v satisfies
Y. =Yycu{-0c:0eXn<} (v isany reasonable notion of truth
compatible with X..), and

o C is any r.e. set that is closed under tautological implication and C #
WFF (C is any reasonable notion of proof).
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Significance

Theorem
Suppose
@ v is any truth assignment such that v satisfies every oy € Yy < and
satisfies no o € L <; equivalently, v satisfies

Y. =Yycu{-0c:0eXn<} (v isany reasonable notion of truth
compatible with X..), and

o C is any r.e. set that is closed under tautological implication and C #
WFF (C is any reasonable notion of proof).

Then there is a true but unprovable sentence.

Compactness and Effectiveness 42 /45




True but Unprovable

Significance

Theorem
Suppose
@ v is any truth assignment such that v satisfies every oy € Yy < and
satisfies no o € L <; equivalently, v satisfies

Y. =Yycu{-0c:0eXn<} (v isany reasonable notion of truth
compatible with X..), and

o C is any r.e. set that is closed under tautological implication and C #
WFF (C is any reasonable notion of proof).

Then there is a true but unprovable sentence.

Proof.
e V={o:v(0)=T}is not decidable, so C + V.
o If VcC, then 3o €V with o0 e C and -0 € C.
@ Since C is closed, C = WFF. (Contradiction.)
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42 (45




Picture

TMs
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Some [sic| notion of truth?

Some (different) examples:
© v(Ay) is true iff M(M) halts and says yes.
@ v(Ayp) is true unless M(M) halts and says no.

@ v(Ayp) is true iff M(M) halts and says yes, or if M(M) loops and |M|
is a prime number.
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True but Unprovable
Fix?

Suppose ¢ is true but unprovable. (Note: ¢ can be a sentence symbol.)
What about 2¢; ¢?
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Fix?
Suppose ¢ is true but unprovable. (Note: ¢ can be a sentence symbol.)

What about 2¢; ¢?
@ X.;¢ is decidable, since each of X. and {¢} is.
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@ For each possible proof system C, there's some other v, with
Y ;¢ E 1 unprovable.
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True but Unprovable
Fix?

Suppose ¢ is true but unprovable. (Note: ¢ can be a sentence symbol.)
What about 2¢; ¢?

@ X.;¢ is decidable, since each of X. and {¢} is.
@ For each possible proof system C, there's some other v, with
Y ;¢ E 1 unprovable.

@ Throw in v, too?
e Throwing in an r.e. set of ¢'s makes no qualitative progress.
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True but Unprovable
Fix?

Suppose ¢ is true but unprovable. (Note: ¢ can be a sentence symbol.)
What about 2¢; ¢?

@ X.;¢ is decidable, since each of X. and {¢} is.

@ For each possible proof system C, there's some other v, with
> <; ¢ =1 unprovable.
@ Throw in v, too?
e Throwing in an r.e. set of ¢'s makes no qualitative progress.
o Throwing in more than an r.e. set makes the new ¥ not r.e.
(unreasonable).
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True but Unprovable
Fix?

Suppose ¢ is true but unprovable. (Note: ¢ can be a sentence symbol.)
What about 2¢; ¢?

@ X.;¢ is decidable, since each of X. and {¢} is.
@ For each possible proof system C, there's some other v, with
> <; ¢ =1 unprovable.
@ Throw in v, too?
e Throwing in an r.e. set of ¢'s makes no qualitative progress.
o Throwing in more than an r.e. set makes the new ¥ not r.e.
(unreasonable).

Later, in first-order logic, the definition of Ay, becomes part of the logic.
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Where We Stand

Done with Boolean Logic (we'll build on it, next)
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Done with Boolean Logic (we'll build on it, next)
Gave algorithms for

@ testing whether o is a WFF

e writing a Boolean function over {A, -}, but not over {A,V}, etc.
o testing whether o is true under v

@ ¥ = o for finite X.
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Where We Stand

Done with Boolean Logic (we'll build on it, next)
Gave algorithms for

@ testing whether o is a WFF
e writing a Boolean function over {A, -}, but not over {A,V}, etc.
o testing whether o is true under v
@ X ko for finite L.
For decidable X,
@ X k7 is recursively enumerable.
@ ¥ =7 may not be decidable.

Reformulation:
For certain ¥, given any v compatible with ¥ and any r.e., closed,
not-all-WFF proof system C, there is a true but unprovable sentence.
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