CONSTRAINT SATISFACTION PROBLEMS

CHAPTER 6.1-3

Adapted from slides kindly shared by Stuart Russell

Chapter 6.1-3

1

Announcements

Revised deadline for Python Tutorial (P0): This Wednesday at 17:00.
Submit Project 0 via D2L Dropbox while we work on real-time autograding
Project 1 (search) assigned, due Thu 9-27 at 5pm (change from syllabus)
Office hours for me on Thursday 2:30-3:30, ECST 121

Chapter 6.1-3 2

Outline

{» Constraint Satisfaction Problems (CSP)
{» Backtracking search for CSPs

Chapter 6.1-3 3

Search: Planning vs Identification

We've focussed on using search for (planning) so far:
planning a path to a goal

Can also be used for just (identifying) a goal,
viewed as assignments to variables

CSPs are specialized for identification problems

Chapter 6.1-3

4

Constraint satisfaction problems (CSPs)

Standard search problem:
state is a "black box"—any old data structure
that supports goal test, eval, successor

CSP:

state is defined by variables X; with values from domain D),

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms

Chapter 6.1-3

Example: Map-Coloring

Northern
Territory
Western Queensland
Australia
South —
Australia
New South Wales

m

Tasmania

Variables WA, NT',), NSW, V, SA, T
Domains D; = {red, green, blue}
Constraints: adjacent regions must have different colors
e.g., WA # NT (if the language allows this), or
(WA, NT) € {(red, green), (red, blue), (green, red), (green, blue), . . .}

Chapter 6.1-3 6

Example: Map-Coloring contd.

Tasmvia

Solutions are assignments satisfying all constraints, e.g.,
{(WA=red, NT = green,Q =red, NSW = green,V =red, SA=blue, T = green}

Chapter 6.1-3 7

Constraint graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

O
@

General-purpose CSP algorithms use the graph structure
to speed up search. E.g., Tasmania is an independent subproblem!

Chapter 6.1-3

8

Example: Cryptarithmetic

o4 -
Cl=z =
0[O0 O

|+

%ﬁ X2 X;

Variables: /" T'U W R O X, X, X;3
Domains: {0,1,2,3,4,5,6,7,8,9}
Constraints
alldiff F,'T, U, W, R, O)
O+0=R+10- Xy, etc.

Chapter 6.1-3 9

Varieties of CSPs

Discrete variables
finite domains; size d = O(d") complete assignments
{ e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
infinite domains (integers, strings, etc.)
{ e.g., job scheduling, variables are start/end days for each job
> need a constraint language, e.g., Start.Job, +5 < StartJobs
> linear constraints solvable, nonlinear undecidable

Continuous variables
{ e.g., start/end times for Hubble Telescope observations
{> linear constraints solvable in poly time by LP methods

Chapter 6.1-3 10

Varieties of constraints

Unary constraints involve a single variable,
e.g., SA # green

Binary constraints involve pairs of variables,

e.g, SAFWA

Higher-order constraints involve 3 or more variables,
e.g., cryptarithmetic column constraints

Preferences (soft constraints), e.g., red is better than green
often representable by a cost for each variable assignment
— constrained optimization problems

Chapter 6.1-3

11

Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration
Spreadsheets
Transportation scheduling
Factory scheduling

Floorplanning

Notice that many real-world problems involve real-valued variables

Chapter 6.1-3 12

Standard search formulation (incremental)

Let's start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far
{ Initial state: the empty assignment, { }

> Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.
= fail if no legal assignments (not fixable!)

> Goal test: the current assignment is complete

1) This is the same for all CSPs! &)
2) Every solution appears at depth 7 with 7 variables
= use depth-first search
3) Path is irrelevant, so can also use complete-state formulation

4) b= (n — ()d at depth 7, hence n!d" leaves!!!!)

where there are n variables, d possible values per variable

Chapter 6.1-3 13

Search Methods

Consider Simplest CSP ever: two bits, constrained to be equal

Consider Australian map

What would BFS do?
What would DFS do?

What problems does this approach have?

Chapter 6.1-3 14

Backtracking search

Variable assignments are commutative, i.e.,
[WA=redthen NT = green| sameas [N'1 = greenthen WA =red]

Only need to consider assignments to a single variable at each node
= b=d and there are d" leaves

Check for conflicts as you make variable assignments
“incremental goal test”

Depth-first search for CSPs with single-variable assignments
is called backtracking search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n ~ 25

Chapter 6.1-3 15

Backtracking search

function BACKTRACKING-SEARCH(csp) returns solution /failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)

function RECURSIVE-BACKTRACKING (assignment, csp) returns soln /failure

if assignment is complete then return assignment

var<— SELECT-UNASSIGNED- VARIABLE(VARIABLES|csp)|, assignment, csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment given CONSTRAINTS[csp| then

add {var = value} to assignment
result < RECURSIVE-BACKTRACKING (assignment, csp)
if result # failure then return result

remove {var = value} from assignment
return failure

Chapter 6.1-3

16

Backtracking example

D

Chapter 6.1-3

17

Backtracking example

NS

—]

o o

Backtracking example

Backtracking example

—]

¢ & &

Improving backtracking efficiency

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?
2. In what order should its values be tried?
3. Can we detect inevitable failure early?

4. Can we take advantage of problem structure?

Chapter 6.1-3 21

Minimum remaining values

Minimum remaining values (MRV):
choose the variable with the fewest legal values
AKA “most constrained variable” or “fail-fast” ordering

I

Chapter 6.1-3 22

Degree heuristic

Tie-breaker among MRV variables

Degree heuristic:
choose the variable with the most constraints on remaining variables

R SR S

Chapter 6.1-3 23

Least constraining value

Given a variable, choose the least constraining value:
the one that rules out the fewest values in the remaining variables

\ |‘ Allows 1 value for SA
H;*CHE*CH;< ‘“
Allows 0 values for SA

Combining these heuristics makes 1000 queens feasible

Chapter 6.1-3 24

Filtering: Forward checking

|dea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

=S

WA NT Q NSW \% SA T

Chapter 6.1-3 25

Forward checking

|dea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

SSE S

WA NT Q NSW v SA T
ENEENE(ENEENEEFEENEENE
I | BT irerrirerni HENE

Chapter 6.1-3 26

Forward checking

|dea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

e -

WA NT Q NSW v SA T
ENEENEENEENEENEENEENE
I | TN Irenirern i HENE
1 H | /H E(EN N HENE

Chapter 6.1-3 27

Forward checking

|dea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

‘_Lb_"\\ '[:; "‘_Lb_"_ﬁ;

WA NT Q NSW v SA T
ENEENEENEENE/ENE|ENEE
I | EENEENE|EY N Hin
I | 1 /N H|E" N H N
I | H | | | I | |

Chapter 6.1-3 28

Filtering: Constraint propagation

Forward checking propagates information from assigned to unassigned vari-
ables, but doesn't provide early detection for all failures:

S SR S

WA NT Q NSW \% SA T
ENEENFEEFEENFEIETEE EIETE
L] EENTEECTEETE HiETH
] [] HE EETE HENH

N'T and S A cannot both be bluel

Constraint propagation repeatedly enforces constraints locally

Chapter 6.1-3 29

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff

for every value & of X there is some allowed 7

WA

Sl

NT

-‘\‘ II\T ,‘_LI:

Chapter 6.1-3

30

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff

for every value & of X there is some allowed 7

WA

Sl

NT

-‘\‘ II\T ,‘_LI:

Chapter 6.1-3

31

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value & of X there is some allowed 7

S Some ow

WA NT Q N

SA

SW \Y
] O 1 o

\«

If X loses a value, neighbors of X need to be rechecked

Chapter 6.1-3

32

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value & of X there is some allowed 7

S Some ow

WA NT Q N

] O ISV;I:E(VI) (T

— ‘< —
If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

Chapter 6.1-3

33

Arc consistency algorithm

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X, X5, ..., X}
local variables: qucue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(X;, X;) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X;, X;) then
for each X} in NEIGHBORS[X|| do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X;, X;) returns true iff succeeds
removed < false
for each z in DOMAIN[X]] do
if no value y in DOMAIN[X] allows (z,y) to satisfy the constraint X; <> X,
then delete z from DOMAIN[X}]; removed < true
return removed

O(n*d?®), can be reduced to O(n*d*) (but detecting all is NP-hard)

Chapter 6.1-3 34

Summary

CSPs are a special kind of problem:
states defined by values of a fixed set of variables
goal test defined by constraints on variable values

Backtracking = depth-first search with one variable legally assigned per node
Variable ordering and value selection heuristics help significantly
Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies

Chapter 6.1-3 35

