
Informed search algorithms - A* and

Heuristics

Chapter 3, Sections 5–6

Adapted from slides kindly shared by Stuart Russell

Chapter 3, Sections 5–6 1

Announcements

Project 0 due Thu 9-06 at 5pm

Project 1 will be posted today or tomorrow, due 9-18 at 5pm

Please do not distribute or post solutions to any of the projects

Programming projects: in groups of 1 or 2 - 5 late days, max

2 days per project

Please do not distribute or post solutions to any of the projects

Pooneh and HJ Grader hours starting this week

My office hours cancelled this week - use Piazza

Chapter 3, Sections 5–6 2

Motivation

Like my shiny new exoskeleton?

Motivation for this week, and project P1: search:

A* search might be part of me or you some day....

Prof Hugh Herr, TEDMED 2010 on bionic legs

Chapter 3, Sections 5–6 3

Outline

♦ Best-first search

♦ A∗ search

♦ Heuristics

Chapter 3, Sections 5–6 4

Review: Tree search

function Tree-Search(problem, fringe) returns a solution, or failure

fringe← Insert(Make-Node(Initial-State[problem]), fringe)

loop do

if fringe is empty then return failure

node←Remove-Front(fringe)

if Goal-Test[problem] applied to State(node) succeeds return node

fringe← InsertAll(Expand(node,problem), fringe)

A strategy is defined by picking the order of node expansion

Chapter 3, Sections 5–6 5

Best-first search

Idea: use an evaluation function for each node
– estimate of “desirability”

⇒ Expand most desirable unexpanded node

Implementation:
fringe is a queue sorted in decreasing order of desirability

Special cases:
greedy search
A∗ search

Chapter 3, Sections 5–6 6

Romania with step costs in km

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest

 0
160
242
161

77
151

241

366

193

178

253
329
80

199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Chapter 3, Sections 5–6 7

Greedy search

Evaluation function h(n) (heuristic)
= estimate of cost from n to the closest goal

E.g., hSLD(n) = straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

Chapter 3, Sections 5–6 8

Greedy search example

Arad

366

Chapter 3, Sections 5–6 9

Greedy search example

Zerind

Arad

Sibiu Timisoara

253 329 374

Chapter 3, Sections 5–6 10

Greedy search example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329 374

366 176 380 193

Chapter 3, Sections 5–6 11

Greedy search example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0

Chapter 3, Sections 5–6 12

Properties of greedy search

Complete??

Chapter 3, Sections 5–6 13

Properties of greedy search

Complete?? No–can get stuck in loops, e.g., from Vaslui with Oradea as
goal,

Iasi → Neamt → Iasi → Neamt →
Complete in finite space with repeated-state checking

Time??

Chapter 3, Sections 5–6 14

Properties of greedy search

Complete?? No–can get stuck in loops, e.g.,
Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking

Time?? O(bm), but a good heuristic can give dramatic improvement

Space??

Chapter 3, Sections 5–6 15

Properties of greedy search

Complete?? No–can get stuck in loops, e.g.,
Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking

Time?? O(bm), but a good heuristic can give dramatic improvement

Space?? O(bm)—keeps all nodes in memory

Optimal??

Chapter 3, Sections 5–6 16

Properties of greedy search

Complete?? No–can get stuck in loops, e.g.,
Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking

Time?? O(bm), but a good heuristic can give dramatic improvement

Space?? O(bm)—keeps all nodes in memory

Optimal?? No

Chapter 3, Sections 5–6 17

A∗ search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n

h(n) = estimated cost to goal from n

f(n) = estimated total cost of path through n to goal

A∗ search uses an admissible heuristic
i.e., h(n) ≤ h∗(n) where h∗(n) is the true cost from n.
(Also require h(n) ≥ 0, so h(G) = 0 for any goal G.)

E.g., hSLD(n) never overestimates the actual road distance

Theorem: A∗ search is optimal

Chapter 3, Sections 5–6 18

A∗ search example

Arad

366=0+366

Chapter 3, Sections 5–6 19

A∗ search example

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374393=140+253

Chapter 3, Sections 5–6 20

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Chapter 3, Sections 5–6 21

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Fagaras Oradea

447=118+329 449=75+374

646=280+366 415=239+176

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

671=291+380

Chapter 3, Sections 5–6 22

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380

Chapter 3, Sections 5–6 23

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380

Chapter 3, Sections 5–6 24

Properties of A∗

Complete??

Chapter 3, Sections 5–6 25

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)

Time??

Chapter 3, Sections 5–6 26

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)

Time?? Exponential in [relative error in h × length of soln.]

Space??

Chapter 3, Sections 5–6 27

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)

Time?? Exponential in [relative error in h × length of soln.]

Space?? Keeps all nodes in memory

Optimal??

Chapter 3, Sections 5–6 28

Properties of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)

Time?? Exponential in [relative error in h × length of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand fi+1 until fi is finished

A∗ expands all nodes with f(n) < C∗

A∗ expands some nodes with f(n) = C∗

A∗ expands no nodes with f(n) > C∗

Chapter 3, Sections 5–6 29

Admissible heuristics

E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) =??
h2(S) =??

Chapter 3, Sections 5–6 30

Admissible heuristics

E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(S) =?? 6
h2(S) =?? 4+0+3+3+1+0+2+1 = 14

Chapter 3, Sections 5–6 31

Dominance

If h2(n) ≥ h1(n) for all n (both admissible)
then h2 dominates h1 and is better for search

Typical search costs and Effective Branching Factors:

d = 12 IDS = 3,644,035 nodes, EBF 2.78
A∗(h1) = 227 nodes, EBF 1.42
A∗(h2) = 73 nodes, EBF 1.24

d = 24 IDS off the chart
A∗(h1) = 39,135 nodes, EBF 1.48
A∗(h2) = 1,641 nodes, EBF 1.26

Given any admissible heuristics ha, hb,

h(n) = max(ha(n), hb(n))

is also admissible and dominates ha, hb

Chapter 3, Sections 5–6 32

Relaxed problems

Admissible heuristics can be derived from the exact
solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then h1(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then h2(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem

Chapter 3, Sections 5–6 33

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP)
Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in O(n2)
and is a lower bound on the shortest (open) tour

Chapter 3, Sections 5–6 34

Summary

Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest h
– incomplete and not always optimal

A∗ search expands lowest g + h

– complete and optimal
– also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems

Chapter 3, Sections 5–6 35

