
Constraint Satisfaction Problems

Chapter 6.3-5

Adapted from slides kindly shared by Stuart Russell

Chapter 6.3-5 1

Announcements

Deadline for Python Tutorial (P0): Today at 17:00.

Submit P0 via D2L Dropbox, via zip archive exactly as specified

Get started on Project 1 (search), lots of steps, due Thu 9-27 at 5pm

Office hours for me on Thursday 2:30-3:30, ECST 121

Chapter 6.3-5 2

Outline

♦ Review backtracking, ordering, filtering, forward checking

♦ Review arc consistency, do exercise 6.11 in class as a group

♦ Problem structure and problem decomposition

♦ Local search for CSPs

Chapter 6.3-5 3

Filtering: Forward checking

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

How is it different from Arc consistency?

Chapter 6.3-5 4

Forward checking

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

WA NT Q NSW V SA T

Chapter 6.3-5 5

Forward checking

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

WA NT Q NSW V SA T

Chapter 6.3-5 6

Forward checking

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

WA NT Q NSW V SA T

Chapter 6.3-5 7

Filtering: Constraint propagation

Forward checking propagates information from assigned to unassigned vari-
ables, but doesn’t provide early detection for all failures:

WA NT Q NSW V SA T

NT and SA cannot both be blue!

Constraint propagation repeatedly enforces constraints locally

Chapter 6.3-5 8

Example: Map-Coloring

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania
Variables WA, NT , Q, NSW , V , SA, T
Domains Di = {red, green, blue}
Constraints: adjacent regions must have different colors

e.g., WA 6= NT (if the language allows this), or
(WA,NT) ∈ {(red, green), (red, blue), (green, red), (green, blue), . . .}

Chapter 6.3-5 9

Arc consistency algorithm

function AC-3(csp) returns the CSP, possibly with reduced domains, or false if

inconsistent

inputs: csp, a binary CSP with variables {X1, X2, . . . , Xn}

local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do

(Xi, Xj)←Remove-First(queue)

if size of Domain[Xi] = 0 then return false

if Remove-Inconsistent-Values(Xi, Xj) then

for each Xk in Neighbors[Xi] do

add (Xk, Xi) to queue

function Remove-Inconsistent-Values(Xi, Xj) returns true iff succeeds

removed← false

for each x in Domain[Xi] do

if no value y in Domain[Xj] allows (x,y) to satisfy the constraint Xi ↔ Xj

then delete x from Domain[Xi]; removed← true

return removed

Chapter 6.3-5 10

Arc consistency limitations

What are the limitations of arc consistency?

Consider three map regions, each with the same two colors in their domain

Chapter 6.3-5 11

K-consistency

Propagating constraints progressively further out

1-consistency (Node Consistency)

2-consistency (Arc Consistency)

k-Consistency: for each k nodes, any consistent assignment to k-1 can be
extended to the kth node

How expensive is that? Time? Space?

Exponential in k....

Chapter 6.3-5 12

Strong K-consistency

Strong k-consistency just means that not only is the CSP k-consistent, but
also k-1, k-2, ... 1 consistent

Strong n-consistency means we can solve without backtracking!

Lots of middle ground

3-consistency the same as path consistency for binary CSPs

Chapter 6.3-5 13

Problem structure

Victoria

WA

NT

SA

Q

NSW

V

T

Tasmania and mainland are independent subproblems

Identifiable as connected components of constraint graph

Chapter 6.3-5 14

Problem structure contd.

Suppose each subproblem has c variables out of n total

Worst-case solution cost is n/c · dc, linear in n

E.g., n=80, d=2, c=20
280 = 4 billion years at 10 million nodes/sec
4 · 220 = 0.4 seconds at 10 million nodes/sec

Chapter 6.3-5 15

Tree-structured CSPs

A

B

C

D

E

F

Theorem: if the constraint graph has no loops, the CSP can be solved in
O(n d2) time

Compare to general CSPs, where worst-case time is O(dn)

This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic restrictions
and the complexity of reasoning.

Chapter 6.3-5 16

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves
such that every node’s parent precedes it in the ordering

A

B

C

D

E

F

A B C D E F

2. For j from n backward to 2, applyRemoveInconsistent(Parent(Xj), Xj)

3. For j from 1 to n, assign Xj consistently with Parent(Xj)

Chapter 6.3-5 17

Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains

Victoria

WA

NT
Q

NSW

V

TT

Victoria

WA

NT

SA

Q

NSW

V

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset size c ⇒ runtime O(dc · (n− c)d2), very fast for small c

Chapter 6.3-5 18

Iterative algorithms for CSPs

Hill-climbing, simulated annealing typically work with
“complete” states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints
operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hillclimb with h(n) = total number of violated constraints

Chapter 6.3-5 19

Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)

Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

h = 5 h = 2 h = 0

Chapter 6.3-5 20

Performance of min-conflicts

Given random initial state, can solve n-queens in almost constant time for
arbitrary n with high probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

R =
number of constraints

number of variables

R

CPU
time

critical
 ratio

Chapter 6.3-5 21

Summary

Tradeoffs between degree / cost of constraint propagation (k-consistency)
and of backtracking

The CSP representation allows analysis of problem structure

Tree-structured CSPs can be solved in linear time

Iterative min-conflicts is usually effective in practice

Chapter 6.3-5 22

