
Game playing I
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Adapted from slides kindly shared by Stuart Russell
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Announcements

Grades for Python Tutorial (P0) will be up after I get some D2L questions
answered

Glad to see folks digging into P1 (search). Due Thu 9-27 at 5pm

Hint: you’ll probably want a simple Node class to manage your search tree

Wed: more pacman - bring your questions; talk about quiz next Monday

Put off Expectimax till next week

Project P2: Multi-Agent Pac-Man - coming soon!

Office hours for me on Thursday 2:30-3:30 and Friday 2:00-3:00, ECST 121
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Outline

♦ Games

♦ Perfect play
– minimax decisions
– α–β pruning

♦ Resource limits and approximate evaluation
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Games vs. search problems

Specify a move in each state, rather than sequence of actions like in search

“Unpredictable” opponent ⇒ solution is a strategy (policy) specifying a
move for every possible opponent reply

Policy maps states to actions

Time limits ⇒ unlikely to find goal, must approximate
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Types of games

deterministic chance

perfect information

imperfect information

chess, checkers,
go, othello

backgammon
monopoly

bridge, poker, scrabble
nuclear war

battleships,
blind tictactoe

Zero-sum vs room for cooperation
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Deterministic, zero-sum, perfect info

• Know the rules

• Know what actions do

• Zero-sum: Gain for one player is loss for other (really “constant sum”)

• One player maximizes result, the other minimizes result

This is the focus for today
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Game Playing State-of-the-Art

Checkers: Chinook ended 40-year-reign of human world champion Marion
Tinsley in 1994. Used an endgame database defining perfect play for all
positions involving 8 or fewer pieces on the board, a total of 443,748,401,247
positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a six-
game match in 1997. Deep Blue searches 200 million positions per second,
uses very sophisticated evaluation, and undisclosed methods for extending
some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers, who are
too good.

Go: Until recently: human champions refused to compete against computers,
who are too bad. In go, b > 300. A classic challenge for AI since long ago.
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Go

Great game: handicaps!

Very hard for AI

Big board

Many moves possible

Difficult evaluation function

But in the last few years, best go program (Zen) became better than perhaps
99% of online human players (6d on KGS Go Server).

Monte Carlo (randomized) search/evaluation.
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Pacman

Unknown :)
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Game vs Search Reinterpretation

Each node stores a value: the best outcome it can reach

This is the maximal outcome of its children (the max value)

Note that we don’t have path sums as before (utilities at end)

After search, can pick move that leads to best node
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Game tree (2-player, deterministic, turns)
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Minimax

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value
= best achievable payoff against best play

E.g., 2-ply game:
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Properties of minimax

Complete??
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Properties of minimax

Complete?? Only if tree is finite (chess has specific rules for this).
NB a finite strategy can exist even in an infinite tree!

Optimal??
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Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity??
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Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(bm)

Space complexity??
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Properties of minimax

Complete?? Yes, if tree is finite (chess has specific rules for this)

Optimal?? Yes, against an optimal opponent. Otherwise??

Time complexity?? O(bm)

Space complexity?? O(bm) (depth-first exploration)

For chess, b ≈ 35, m ≈ 100 for “reasonable” games
⇒ exact solution completely infeasible

But do we need to explore every path?
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Resource limits

Standard approach:

• Use Cutoff-Test instead of Terminal-Test

e.g., depth limit

• Use Eval instead of Utility

i.e., evaluation function that estimates desirability of position

Iterative deepening search:

• Start with a shallow search, get a possible answer

• Keep searching deeper until you run out of time

Suppose we have 100 seconds, explore 104 nodes/second
⇒ 106 nodes per move ≈ 358/2

⇒ α–β reaches depth 8 ⇒ pretty good chess program
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Iterative deepening search

function Iterative-Deepening-Search( problem) returns a solution

inputs: problem, a problem

for depth← 0 to ∞ do

result←Depth-Limited-Search( problem, depth)

if result 6= cutoff then return result

end
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Iterative deepening search l = 0

Limit = 0 A A
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Iterative deepening search l = 1
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Iterative deepening search l = 2
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Iterative deepening search l = 3

Limit = 3
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Evaluation functions

Black to move 

White slightly better

White to move 

Black winning

For chess, typically linear weighted sum of features

Eval(s) = w1f1(s) + w2f2(s) + . . . + wnfn(s)

e.g., w1 = 9 with
f1(s) = (number of white queens) – (number of black queens), etc.
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Digression: Exact values don’t matter

MIN

MAX

21

1

42

2

20

1

1 40020

20

Behaviour is preserved under any monotonic transformation of Eval

Only the order matters:
payoff in deterministic games acts as an ordinal utility function
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α–β pruning example

MAX

3 12 8

MIN 3

3
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α–β pruning example
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α–β pruning example
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α–β pruning example
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α–β pruning example
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Why is it called α–β?

..

..

..

MAX

MIN

MAX

MIN V

α is the best value (to max) found so far off the current path

If V is worse than α, max will avoid it ⇒ prune that branch

Define β similarly for min
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The α–β algorithm Min / Max

function Max-Value(state,α,β) returns a utility value

inputs: state, current state in game

α, the value of the best alternative for max along the path to state

β, the value of the best alternative for min along the path to state

if Terminal-Test(state) then return Utility(state)

v←−∞

for a, s in Successors(state) do

v←Max(v, Min-Value(s,α,β))

if v ≥ β then return v

α←Max(α, v)

return v

function Min-Value(state,α,β) returns a utility value

same as Max-Value but with roles of α,β reversed
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Properties of α–β

Pruning does not affect final result

Good move ordering improves effectiveness of pruning

With “perfect ordering,” time complexity = O(bm/2)
⇒ doubles solvable depth

A simple example of the value of reasoning about which computations are
relevant (a form of metareasoning)

Unfortunately, 3550 is still impossible!

Chapter 5.1-4 34


