
Game playing II - Expectimax

Chapter 5

Adapted from slides kindly shared by Stuart Russell

Chapter 5 1

Announcements

P1 (search) due Thu 10-04 at 5pm

Autograder will be run manually tonight and a few times tomorrow.

Project P2 Multi-Agent Pac-Man coming later this week.

♦ Builds on Search in Pac-Man

♦ Now with Ghosts! Minimax, Expectimax, Evaluation

Office hours for me on Thursday 2:30-3:30 and Friday 1:30-2:30, ECST 121

Thanks to Dan Klein for some of these slides

Hand quizzes back

Chapter 5 2

Outline

♦ Games of chance

♦ Games of imperfect information

Chapter 5 3

Nondeterministic games: backgammon

1 2 3 4 5 6 7 8 9 10 11 12

24 23 22 21 20 19 18 17 16 15 14 13

0

25

Chapter 5 4

Nondeterministic games in general

In nondeterministic games, chance introduced by dice, card-shuffling

Simplified example with coin-flipping:

MIN

MAX

2

CHANCE

4 7 4 6 0 5 −2

2 4 0 −2

0.5 0.5 0.5 0.5

3 −1

Chapter 5 5

Expectimax Search

For “chance” nodes: Calculate expected utilities

I.e. take weighted average (expectation) of values of children

Chapter 5 6

Algorithm for nondeterministic games

Expectimax (or Expectiminimax etc) gives perfect play

Just like Minimax, except we must also handle chance nodes:

. . .

if state is a Max node then
return the highestExpectiMinimax-Value of Successors(state)

if state is a Min node then
return the lowestExpectiMinimax-Value of Successors(state)

if state is a chance node then
return weightavg ofExpectiMinimax-Value of Successors(state)

. . .

Chapter 5 7

What Probabilities to Use?

In expectimax search, we have a probabilistic model of how the opponent
(or environment) will behave in any state

Model could be a simple uniform distribution (roll a die) Model could be
sophisticated and require a great deal of computation

We have a node for every outcome out of our control: opponent or environ-
ment

The model might say that adversarial actions are likely!

For now, assume that for any state we magically have a distribution to assign
probabilities to opponent actions and environmental outcomes

Later on, formalize how to model that as Markov Decision Processes

Chapter 5 8

Nondeterministic games in practice

Dice rolls increase b: 21 possible rolls with 2 dice
Backgammon ≈ 20 legal moves (can be 6,000 with 1-1 roll)

depth 4 = 20× (21× 20)3 ≈ 1.2× 109

As depth increases, probability of reaching a given node shrinks
⇒ value of lookahead is diminished

α–β pruning is much less effective

TDGammon uses depth-2 search + very good Eval

≈ world-champion level

Chapter 5 9

What Utilities to Use?

For minimax, terminal function scale doesn’t matter - just ordering

For expectimax, we need magnitudes to be meaningful

Chapter 5 10

Digression: Exact values DO matter

DICE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

Behaviour is preserved only by positive linear transformation of Eval

Hence Eval should be proportional to the expected payoff

Chapter 5 11

Reminder: Probabilities

• A random variable represents an event whose outcome is unknown

• A probability distribution is an assignment of weights to outcomes

• Example: traffic on freeway?

– Random variable: T = whether there’s traffic

– Outcomes: T in none, light, heavy

– Distribution:

∗ P(T=none) = 0.25

∗ P(T=light) = 0.55

∗ P(T=heavy) = 0.20

Chapter 5 12

Reminder: Probabilities, continued

Some laws of probability (more later):

♦ Probabilities are always non-negative

♦ Probabilities over all possible outcomes sum to one

As we get more evidence, probabilities may change:

♦ P(T=heavy) = 0.20, P(T=heavy — Hour=8am) = 0.60

♦ We’ll talk about methods for reasoning and updating probabilities later

Chapter 5 13

Reminder: Expectations

We can define function f(X) of a random variable X

The expected value of a function is its average value, weighted by the prob-
ability distribution over inputs

Example: How long to get to the airport?

• Length of driving time as a function of traffic: L(none) = 20, L(light) =
30, L(heavy) = 60

•What is my expected driving time?

– Notation: E[L(T)]

– Remember, P(T) = none: 0.25, light: 0.5, heavy: 0.25

– E[L(T)] = L(none) * P(none) + L(light) * P(light) + L(heavy) *
P(heavy)

– E[L(T)] = (20 * 0.25) + (30 * 0.5) + (60 * 0.25) = 35

Chapter 5 14

Expectimax for Pacman

• Notice that we’ve gotten away from thinking that the ghosts are trying
to minimize pacman’s score

• Instead, they are now a part of the environment

• Pacman has a belief (distribution) over how they will act

• Quiz: Can we see minimax as a special case of expectimax?

• Quiz: what would pacman’s computation look like if we assumed that the
ghosts were doing 1-ply minimax and taking the result 80% of the time,
otherwise moving randomly?

• If you take this further, you end up calculating belief distributions over
your opponents’ belief distributions over your belief distributions, etc...

• Can get unmanageable very quickly!

Chapter 5 15

Games of imperfect information

E.g., card games, where opponent’s initial cards are unknown

Typically we can calculate a probability for each possible deal

Seems just like having one big dice roll at the beginning of the game∗

Idea: compute the minimax value of each action in each deal,
then choose the action with highest expected value over all deals∗

Special case: if an action is optimal for all deals, it’s optimal.∗

GIB, current best bridge program, approximates this idea by
1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average

Chapter 5 16

Summary

Games are fun to work on! (and dangerous)

They illustrate several important points about AI

♦ perfection is unattainable ⇒ must approximate

♦ good idea to think about what to think about (metareasoning)

♦ uncertainty constrains the assignment of values to states

♦ optimal decisions depend on information state, not real state

Chapter 5 17

Pacman demo and Suicide Pacman Exercise

Chapter 5 18

