
Rational decisions
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Adapted from slides kindly shared by Stuart Russell
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Appreciations

♦ Appreciations :)

♦ Modern medicine

♦ Improvisation

Share some of yours?
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Outline

♦ Uncertainty

♦ Rational preferences

♦ Maximizing expected utility

♦ Utilities

♦ Money
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Uncertainty

Let action At = leave for airport t minutes before flight
Will At get me there on time?

Problems:
1) partial observability (road state, other drivers’ plans, etc.)
2) noisy sensors (Google traffic map overlays)
3) uncertainty in action outcomes (flat tire, etc.)
4) immense complexity of modelling and predicting traffic

Logic, Reasoning, Planning (Ch 7-12): develop contingency plan

A purely logical approach either
1) risks falsehood: “A25 will get me there on time”

or 2) leads to conclusions that are too weak for decision making:
“A25 will get me there on time if there’s no accident on the bridge
and it doesn’t rain and my tires remain intact etc etc.”

(A1440 might be said to get me there on time, but . . .)
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Methods for handling uncertainty

Probability
Given the available evidence,

A25 will get me there on time with probability 0.04

Mahaviracarya (9th C.) - bets that can’t lose

Cardano (1565) - theory of gambling

Money, a timeless motivator....

“Against the Gods - the Remarkable Story of Risk” by Bernstein.
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Probability

Probabilistic assertions summarize effects of
laziness: failure to enumerate exceptions, qualifications, etc.
ignorance: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability:
Probabilities relate propositions to one’s own state of knowledge

e.g., P (A25|no reported accidents) = 0.06

These are not claims of a “probabilistic tendency” in the current situation
(but might be learned from past experience of similar situations)

Probabilities of propositions change with new evidence:
e.g., P (A25|no reported accidents, 5 a.m.) = 0.15
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Making decisions under uncertainty

Suppose I believe the following:

P (A25 gets me there on time| . . .) = 0.04

P (A90 gets me there on time| . . .) = 0.70

P (A120 gets me there on time| . . .) = 0.95

P (A1440 gets me there on time| . . .) = 0.9999

Which action to choose?

Depends on my preferences for missing flight vs. airport cuisine, etc.

Utility theory is used to represent and infer preferences

Decision theory = utility theory + probability theory
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Maximizing Expected Utilities

Maximizing expected utilities is at the heart of this course

A rational agent should choose the action which maximizes

its expected utility, given its knowledge

Breaking that down:

♦ Expectation given knowledge: probabilitic inference - middle of
course

♦ To do that, need experience, learning - later in course

♦ Maximization - figure out which action to choose given what might
happen as a result - current focus

Chapter 13.1, 16.1-3 8



Reducing preferences to tractable utilities

Can your preferences be summarized with utilities?

If you’re “rational”, yes.

Experiments suggest otherwise, humans not behaving rationally

Heads up: don’t gamble or play the wrong sorts of games if you prefer not
to adopt these constraints
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Preferences

An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situations
with uncertain prizes

Lottery L = [p,A; (1− p), B]

L

p

1−p

A

B

Notation:
A ≻ B A preferred to B

A ∼ B indifference between A and B

A ≻∼ B B not preferred to A
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Rational preferences

Idea: preferences of a rational agent must obey constraints.

The axioms of rationality:
Orderability

Exactly one of (A ≻ B) ∨ (B ≻ A) ∨ (A ∼ B) holds
Transitivity

(A ≻ B) ∧ (B ≻ C) ⇒ (A ≻ C)
Continuity

A ≻ B ≻ C ⇒ ∃ p [p,A; 1− p, C] ∼ B

Substitutability
A ∼ B ⇒ [p,A; 1− p, C] ∼ [p, B; 1− p, C]

Monotonicity

A ≻ B ⇒ (p ≥ q ⇔ [p,A; 1− p,B] ≻∼ [q, A; 1− q, B])

Rational preferences ⇒
behavior describable as maximization of expected utility
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Rational preferences contd.

Violating the constraints leads to self-evident irrationality

For example: an agent with intransitive preferences can be induced to give
away all its money

If B ≻ C, then an agent who has C
would pay (say) 1 cent to get B

If A ≻ B, then an agent who has B
would pay (say) 1 cent to get A

If C ≻ A, then an agent who has A
would pay (say) 1 cent to get C

A

B C

1c 1c

1c

Theorem: Rational preferences imply behavior describable as maximazation
of expected utility
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Maximizing expected utility

Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
Given preferences satisfying the constraints
there exists a real-valued function U such that

Greater utility means preference

U (A) ≥ U (B) ⇔ A ≻∼ B

Utility of a lottery is the expectation of the utilities

U ([p1, S1; . . . ; pn, Sn]) = Σi piU (Si)

MEU principle:
Choose the action that maximizes expected utility

Note: an agent can be entirely rational (consistent with MEU)
without ever representing or manipulating utilities and probabilities

E.g., a lookup table for perfect tictactoe
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Utility scales

Normalized utilities: u⊤ = 1.0, u⊥ = 0.0

Micromorts: one-millionth chance of death
useful for Russian roulette, paying to reduce product risks, etc.

QALYs: quality-adjusted life years
useful for medical decisions involving substantial risk

Note: behavior is invariant w.r.t. positive linear transformation

U ′(x) = k1U (x) + k2 where k1 > 0
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Human Utilities

Utilities map states to real numbers. Which numbers?

Standard approach to assessment of human utilities:
compare a given state A to a standard lottery Lp that has

“best possible prize” u⊤ with probability p

“worst possible catastrophe” u⊥ with probability (1− p)
adjust lottery probability p until A ∼ Lp

L

0.999999

0.000001

continue as before

instant death

pay $30 ~
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Money

Money does not behave as a utility function

Given a lottery L with expected monetary value EMV (L),
usually U (L) < U (EMV (L)), i.e., people are risk-averse

Utility curve: for what probability p am I indifferent between a prize x and
a lottery [p, $M ; (1− p), $0] for large M?

Typical empirical data, extrapolated with risk-prone behavior:

+U

+$

−150,000 800,000
o

o
o

o
o

o
o o o o o o o o

o
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Insurance

Consider the lottery [0.5, $1000; 0.5 $0 ]

♦ What it the expected monetary value? ($500)

♦ What is its certainty equivalent? (monetary value acceptable in lieu of
lottery)

$400 is a typical value

Difference of $100 is the insurance premium

Insurance company has much larger assets, nearly linear utility curve there,
less risk-averse.

Not zero sum - everyone happy
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Human Rationality?

Example of Allais (1953). Two lotteries:

♦ A: [0.8, $4000; 0.2, $0]

♦ B: [1.0, $3000; 0.0, $0]

♦ C: [0.2, $4000; 0.8, $0]

♦ D: [0.25, $3000; 0.75, $0]

Chapter 13.1, 16.1-3 18



Human Rationality?

Example of Allais (1953). Two lotteries:

♦ A: [0.8, $4000; 0.2, $0]

♦ B: [1.0, $3000; 0.0, $0]

♦ C: [0.2, $4000; 0.8, $0]

♦ D: [0.25, $3000; 0.75, $0]

Most people prefer B ≻ A,C ≻ D

But if U($0) = 0, then

♦ B ≻ A ⇒ U ($3000) > 0.8U ($4000)

♦ C ≻ D ⇒ 0.8U ($4000) > U ($3000)
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Human Rationality?

Two views:

♦ Humans broken

♦ Wrong / incomplete model

Need to consider looking at other factors

Get abstraction right - this will come up over and over
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St. Petersburg Paradox

See “Expectimax, MDP, Utility” web page
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Student group utility

For each x, adjust p until half the class votes for lottery (M=10,000)

p

$x
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 500 3000 4000 5000 6000 7000 8000 9000 100001000 2000

Chapter 13.1, 16.1-3 22



Summary

Probability is a rigorous formalism for uncertain knowledge

Rational preferences imply behavior describable as maximazation of expected
utility

Need to get the abstraction right

Humans can be hard to model, or irrational
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