
Sequential decision problems and MDPs

Chapter 17, Section 1

Adapted from slides kindly shared by Stuart Russell

Chapter 17, Section 1 1

Appreciations

♦ StackOverflow Q&A web site - great programming answers!

♦ Book “Abundance” by Diamondis and Kotler - “The Future is Better
than you Think”

Share some of yours?

Chapter 17, Section 1 2

Announcements

Project P2 Multi-Agent Pac-Man is out, due Thu Nov 1

Reformatted, with a more clarity about grading, e.g. point thresholds for q1

Chapter 17, Section 1 3

Outline

♦ Non-Deterministic Search

♦ Sequential decision problems and Markov Decision Processes (MDPs)

♦ GridWorld (part of P3, Reinforcement Learning)

Chapter 17, Section 1 4

Rational preferences

Idea: preferences of a rational agent must obey constraints.

The axioms of rationality:
Orderability

Exactly one of (A ≻ B) ∨ (B ≻ A) ∨ (A ∼ B) holds
Transitivity

(A ≻ B) ∧ (B ≻ C) ⇒ (A ≻ C)
Continuity

A ≻ B ≻ C ⇒ ∃ p [p,A; 1− p, C] ∼ B
Substitutability

A ∼ B ⇒ [p,A; 1− p, C] ∼ [p, B; 1− p, C]
Monotonicity

A ≻ B ⇒ (p ≥ q ⇔ [p,A; 1− p,B] ≻∼ [q, A; 1− q, B])

Rational preferences ⇒
behavior describable as maximization of expected utility

Chapter 17, Section 1 5

Non-Deterministic Search

How do you plan when your actions might fail?

Chapter 17, Section 1 6

Sequential decision problems

Agent’s utility depends on a sequence of of decisions, incorporating utilities,
uncertainty and sensing.

Search

Planning Markov decision
problems (MDPs)

Decision−theoretic
 planning

Partially observable
MDPs (POMDPs)

explicit actions
and subgoals

uncertainty
and utility

uncertainty
and utility

uncertain
sensing

(belief states)explicit actions
and subgoals

Chapter 17, Section 1 7

Example MDP: Gridworld

1 2 3

1

2

3

− 1

+ 1

4

START

0.8

0.10.1

Agent in a grid with obstacles, uncertain transitions (think robots)

20% chance of not going in chosen direction

Rewards: combination of per-move reward (positive or negative) and terminal
state reward

Chapter 17, Section 1 8

Gridworld Demo

Chapter 17, Section 1 9

Gridworld Search Tree

Chapter 17, Section 1 10

MDP trees vs Expectimax

Markov Decision Processes - a family of non-deterministic search problems

Expectimax will solve non-deterministic search problems (often badly)

Better techniques coming later

States s ∈ S, actions a ∈ A

Model T (s, a, s′) ≡ P (s′|s, a) = probability that a in s leads to s′

Transition function, like Successor function

Q-states (like choice nodes)

Reward function R(s) (or R(s, a), R(s, a, s′))

=















−0.04 (small penalty) for nonterminal states
±1 for terminal states

Chapter 17, Section 1 11

Solving MDPs

In search problems, aim is to find an optimal sequence (luxury!)

In MDPs, aim is to find an optimal policy π(s)
i.e., best action for every possible state s
(because can’t predict where one will end up)

The optimal policy maximizes (say) the expected sum of rewards

Optimal policy when state penalty R(s) is –0.04:

1 2 3

1

2

3

− 1

+ 1

4

Chapter 17, Section 1 12

Solving in Non-Deterministic Search

For now, calculate the whole policy at the beginning - it’s small

Then just follow it

More techniques for big state spaces later

Chapter 17, Section 1 13

Markov Assumptions

Where does this term “Markov” fit in?

Andrey Markov (1856-1922)

Markov processes, Markov chains

“Markov assumption” is that given the present state, the future and the past
are independent

Or at most a finite fixed number of previous states

Optimal choice doesn’t depend on previous actions

Chapter 17, Section 1 14

Gridworld Policy Demos

Chapter 17, Section 1 15

Risk and reward

− 1

+ 1

r = [−0.4278 : −0.0850]

− 1

+ 1

r = [−0.0480 : −0.0274]

− 1

+ 1

r = [−0.0218 : 0.0000]

− 1

+ 1

r = [− : −1.6284]8
Chapter 17, Section 1 16

Example: High-Low

Chapter 17, Section 1 17

Utility of state sequences

Need to understand preferences between sequences of states

Typically consider stationary preferences on reward sequences:

[r, r0, r1, r2, . . .] ≻ [r, r′
0
, r′

1
, r′

2
, . . .] ⇔ [r0, r1, r2, . . .] ≻ [r′

0
, r′

1
, r′

2
, . . .]

Theorem: there are only two ways to combine rewards over time.
1) Additive utility function:

U ([s0, s1, s2, . . .]) = R(s0) +R(s1) +R(s2) + · · ·
2) Discounted utility function:

U ([s0, s1, s2, . . .]) = R(s0) + γR(s1) + γ2R(s2) + · · ·
where γ is the discount factor

Chapter 17, Section 1 18

Utility of states

Utility of a state (a.k.a. its value) is defined to be
U (s) = expected (discounted) sum of rewards (until termination)

assuming optimal actions

Given the utilities of the states, choosing the best action is just MEU:
maximize the expected utility of the immediate successors

1 2 3

1

2

3

− 1

+ 1

4

0.611

0.812

0.655

0.762

0.912

0.705

0.660

0.868

 0.388

1 2 3

1

2

3

− 1

+ 1

4

Chapter 17, Section 1 19

Utilities contd.

Problem: infinite lifetimes ⇒ additive utilities are infinite

1) Finite horizon: termination at a fixed time T
⇒ nonstationary policy: π(s) depends on time left

2) Absorbing state(s): w/ prob. 1, agent eventually “dies” for any π
⇒ expected utility of every state is finite

3) Discounting: assuming γ < 1, R(s) ≤ Rmax,

U ([s0, . . . s∞]) = Σ∞
t=0

γtR(st) ≤ Rmax/(1− γ)

Smaller γ ⇒ shorter horizon

4) Maximize system gain = average reward per time step
Theorem: optimal policy has constant gain after initial transient
E.g., taxi driver’s daily scheme cruising for passengers

Chapter 17, Section 1 20

