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Appreciations

{> Relatives interested in family history - Westward Ho in '49 (Thomas

Spalding Wylly)

Share some of yours?
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Announcements

Last day of new material for the test!

FCQ's to be administered today in class

Project P4: Ghostbusters out later today, due Dec 19 - but understand it

before the test....
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Outline

{> Hidden Markov Models

> Forward algorithm

Credit to Dan Klein, Stuart Russell and Andrew Moore for most of today's

slides
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Reasoning over Time

= Often, we want to reason about a sequence of
observations
= Robot localization
= Medical monitoring
= Speech recognition
= Vehicle control

= Need to introduce time into our models
= Basic approach: hidden Markov models (HMMs)

[VIDEO]




Outline

= Markov Models
(last lecture)
» Hidden Markov Models (HMMs)
=Representation

=Inference
=Forward algorithm (special case of variable elimination)
=Particle filtering (next lecture)




Markov Models: recap

= A Markov model is a chain-structured BN
= Each node is identically distributed (stationarity)
= Value of X at a given time is called the state
= As a BN:

() () --»
P(X1) P(X|X_1)
= Parameters: called transition probabilities or

dynamics, specify how the state evolves over time
(also, initial probs)




Conditional Independence

C+ @)~

= Basic conditional independence:
= Past and future independent of the present
= Each time step only depends on the previous
= This is called the (first order) Markov property

= Note that the chain is just a (growing) BN

= We can always use generic BN reasoning on it if we
truncate the chain at a fixed length




Example: Markov Chain

= Weather:
= States: X = {rain, sun} 0 9
= Transitions: @ 1
rain |
0.9 0.9
This are two new
representations of a
= |nitial distribution: 1.0 sun CPT, not BNs!
= What'’s the probability distribution after one step?
P(X5 =sun) = +

P(X5 = sun|Xq = rain)P(X1 = rain)

+0.1-0.0=0.9




Mini-Forward Algorithm

= Question: What's P(X) on some day t?
* An instance of variable elimination! (In order X,, X,, ...)

| \ |
sun |>< sun |>< sun v sun
‘ rain I } rain I rain A

P(xy) = > P(xtlwi—1)P(w—1)

Tt—1

P(x1) = known \

Forward simu/atign




Example

= From initial observation of sun

(o0 {o1) (ois) = (55)

P(X)) P(X) P(X3) P(X..)

= From initial observation of rain

(o) (os) (oo2) = (53]

P(X)) P(Xy) P(X3) P(X.)




Outline

= Markov Models
(last lecture)
» Hidden Markov Models (HMMs)
=Representation

=Inference
=Forward algorithm (special case of variable elimination)
=Particle filtering (next lecture)




Hidden Markov Models

= Markov chains not so useful for most agents
= Eventually you don’t know anything anymore
» Need observations to update your beliefs

= Hidden Markov models (HMMs)

= Underlying Markov chain over states S
* You observe outputs (effects) at each time step
= As a Bayes’ net:

()=o) --->




Example

Ry | PRy)
! 0.7
/ 0.3
Rain, 4 Rain, Rain,
R, [ PU
T | 09
y yl/ 02 y

Umbrella, Umbrella, Umbrella,

= An HMM is defined by:
= |nitial distribution: P(X7)
» Transitions: P(X|X_1)
= Emissions: P(E|X)




Conditional Independence

= HMMs have two important independence properties:
» Markov hidden process, future depends on past via the present
= Current observation independent of all else given current state

ONCNONO,

* Quiz: does this mean that observations are independent
given no evidence?
= [No, correlated by the hidden state]




Real HMM Examples

Speech recognition HMMs:
= Observations are acoustic signals (continuous valued)

= States are specific positions in specific words (so, tens of
thousands)

Machine translation HMMs:
= Observations are words (tens of thousands)
= States are translation options

Robot tracking:
= Observations are range readings (continuous)
= States are positions on a map (continuous)




Filtering / Monitoring

Filtering, or monitoring, is the task of tracking the
distribution B(X) (the belief state) over time

We start with B(X) in an initial setting, usually uniform
As time passes, or we get observations, we update B(X)

The Kalman filter was invented in the 60’s and first
implemented as a method of trajectory estimation for the
Apollo program




Example: Robot Localization

Example from
Michael Pfeiffer

\ T
Prob 0 1

t=0

Sensor model: can read in which directions there is a
wall, never more than 1 mistake

Motion model: may not execute action with small prob.




Example: Robot Localization

[ .
Prob 0 1

t=1

Lighter grey: was possible to get the reading,
but less likely b/c required 1 mistake




Example: Robot Localization

Prob

0

t=2




Example: Robot Localization

Prob 0 1




Example: Robot Localization

Prob

0

t=4




Example: Robot Localization

Prob 0 1




Inference: Base Cases

= Observation = Passage of Time
= Given: P(X,), P(es | X;) = Given: P(X,), P(X5 | X;)
= Query: P(xq | &) V¥ Xq = Query: P(xp) VX,
P(X1le1) P(X2)
P(z1ler) = P(x1,e1)/P(er) P(x2) = ;P(ﬂﬁl,w)
e Pleer) =Y P(a1) P(zle1)

= P(z1)P(e1|r1)




Passage of Time

Assume we have current belief P(X | evidence to date)

B(Xt) = P(Xtle1:t) @ @
—>
Then, after one time step passes:
P(Xig1lerr) =Y P(Xeq1lze) P(xilert)
Tt

Or, compactly:

B'(Xyy1) = P(Xpq1lwe) B(xr)

Basic idea: beliefs get “pushed” through the transitions

= With the “B” notation, we have to be careful about what time step
t the belief is about, and what evidence it includes




Example: Passage of Time

= As time passes, uncertainty “accumulates”

<0.01/[<0.01,

T=1 T=2 T=5

B'(X") => P(X'|z)B(x)

Transition model: ghosts usually go clockwise




Observation

Assume we have current belief P(X | previous evidence):

B'(Xy41) = P(Xy41le1:t)
Then:

P(Xiq1leri41) o< Plepy1| Xeqp1) P(Xiqaler:r)

Or:
B(Xy41) « P(e|X)B'(X;41)

Basic idea: beliefs reweighted by likelihood of evidence

Unlike passage of time, we have to renormalize




Example: Observation

= As we get observations, beliefs get
reweighted, uncertainty “decreases”

<0.
ﬂ -

D

Before observation After observation

B(X) « P(e|X)B'(X)




Example HMM

0.500 0.627
0.500 0.373
True 0.500 0.g18 0.3;83
False 0.500 0.182 0.117




The Forward Algorithm

= We are given evidence at each time and want to know

By(X) = P(X¢le1:)

We can normalize
as we go if we want
to have P(x|e) at
each time step, or
just once at the
end...

= We can derive the following updates
P(zile1:) ocx P(xt,e1:)

= > P(x4_1,%t€1:4)

Tr—1

= > P(wx¢_1,e1:4-1)P(xt|wi_1) Pet|wy)

1

= P(eglay) Y P(ailei—1)P(xi—1,e1:4-1)

Ti—1

= = exactly variable elimination in order X;, X, ...




Online Belief Updates

= Every time step, we start with current P(X | evidence)
= We update for time:

Prieri1) = 3 Plaraleri) - Plaglzy) OO

Tt—1

= We update for evidence:
P(ztleq:) ocx Pxiler:s—1) - Pletlxt) ?

= The forward algorithm does both at once (and doesn’t normalize)
= Problem: space is |X| and time is |X|2 per time step







