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Appreciations

♦ Relatives interested in family history - Westward Ho in ’49 (Thomas
Spalding Wylly)

Share some of yours?
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Announcements

Last day of new material for the test!

FCQ’s to be administered today in class

Project P4: Ghostbusters out later today, due Dec 19 - but understand it
before the test....
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Outline

♦ Hidden Markov Models

♦ Forward algorithm

Credit to Dan Klein, Stuart Russell and Andrew Moore for most of today’s
slides
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Reasoning over Time

� Often, we want to reason about a sequence of 
observations
� Robot localization

� Medical monitoring

� Speech recognition

� Vehicle control

� Need to introduce time into our models

� Basic approach: hidden Markov models (HMMs)
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Outline

� Markov Models

(last lecture)

� Hidden Markov Models (HMMs)

�Representation

�Inference

�Forward algorithm (special case of variable elimination)

�Particle filtering (next lecture)
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Markov Models: recap

� A Markov model is a chain-structured BN
� Each node is identically distributed (stationarity)

� Value of X at a given time is called the state

� As a BN:

� Parameters: called transition probabilities or 
dynamics, specify how the state evolves over time 
(also, initial probs)

X2X1 X3 X4



Conditional Independence

� Basic conditional independence:
� Past and future independent of the present

� Each time step only depends on the previous

� This is called the (first order) Markov property

� Note that the chain is just a (growing) BN
� We can always use generic BN reasoning on it if we 

truncate the chain at a fixed length
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Example: Markov Chain

� Weather:

� States: X = {rain, sun}

� Transitions:

� Initial distribution: 1.0 sun

� What’s the probability distribution after one step?

rain sun

0.9

0.9

0.1

0.1
This are two new 

representations of a 
CPT, not BNs!
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Mini-Forward Algorithm

� Question: What’s P(X) on some day t?

� An instance of variable elimination! (In order X1, X2, … )

sun

rain

sun

rain

sun

rain

sun

rain

Forward simulation
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Example

� From initial observation of sun

� From initial observation of rain

P(X1) P(X2) P(X3) P(X
∞
)

P(X1) P(X2) P(X3) P(X
∞
)
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Outline

� Markov Models

(last lecture)

� Hidden Markov Models (HMMs)

�Representation

�Inference

�Forward algorithm (special case of variable elimination)

�Particle filtering (next lecture)
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Hidden Markov Models

� Markov chains not so useful for most agents
� Eventually you don’t know anything anymore

� Need observations to update your beliefs

� Hidden Markov models (HMMs)
� Underlying Markov chain over states S

� You observe outputs (effects) at each time step

� As a Bayes’ net:
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Example

� An HMM is defined by:
� Initial distribution:
� Transitions:
� Emissions:



Conditional Independence

� HMMs have two important independence properties:
� Markov hidden process, future depends on past via the present

� Current observation independent of all else given current state

� Quiz: does this mean that observations are independent 
given no evidence?
� [No, correlated by the hidden state]
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Real HMM Examples

� Speech recognition HMMs:
� Observations are acoustic signals (continuous valued)

� States are specific positions in specific words (so, tens of 
thousands)

� Machine translation HMMs:
� Observations are words (tens of thousands)

� States are translation options

� Robot tracking:
� Observations are range readings (continuous)

� States are positions on a map (continuous)



Filtering / Monitoring

� Filtering, or monitoring, is the task of tracking the 

distribution B(X) (the belief state) over time

� We start with B(X) in an initial setting, usually uniform

� As time passes, or we get observations, we update B(X)

� The Kalman filter was invented in the 60’s and first 

implemented as a method of trajectory estimation for the 

Apollo program



Example: Robot Localization

t=0

Sensor model: can read in which directions there is a 
wall, never more than 1 mistake

Motion model: may not execute action with small prob.
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Example from 

Michael Pfeiffer



Example: Robot Localization

t=1

Lighter grey: was possible to get the reading, 

but less likely b/c required 1 mistake
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Example: Robot Localization

t=2
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Example: Robot Localization

t=3
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Example: Robot Localization

t=4
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Example: Robot Localization

t=5
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Inference: Base Cases

� Observation

� Given: P(X1), P(e1 | X1)

� Query: P(x1 | e1) ∀ x1

E
1

X
1

X
2

X
1

� Passage of Time

� Given: P(X1), P(X2 | X1)

� Query: P(x2)  ∀ x2



Passage of Time

� Assume we have current belief P(X | evidence to date)

� Then, after one time step passes:

� Or, compactly:

� Basic idea: beliefs get “pushed” through the transitions

� With the “B” notation, we have to be careful about what time step 

t the belief is about, and what evidence it includes

X2X1



Example: Passage of Time

� As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

Transition model: ghosts usually go clockwise



Observation

� Assume we have current belief P(X | previous evidence):

� Then:

� Or:

� Basic idea: beliefs reweighted by likelihood of evidence

� Unlike passage of time, we have to renormalize

E1

X1



Example: Observation

� As we get observations, beliefs get 

reweighted, uncertainty “decreases”

Before observation After observation



Example HMM



The Forward Algorithm
� We are given evidence at each time and want to know

� We can derive the following updates

� = exactly variable elimination in order X1, X2, …

We can normalize 

as we go if we want 

to have P(x|e) at 

each time step, or 

just once at the 

end…



Online Belief Updates

� Every time step, we start with current P(X | evidence)

� We update for time:

� We update for evidence:

� The forward algorithm does both at once (and doesn’t normalize)

� Problem: space is |X| and time is |X|2 per time step

X2X1

X2

E2




