BAYES NETS

CH. 14.1-2.4

Adapted from slides kindly shared by Stuart Russell
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Appreciations

{> Osteoblasts!

> Alspace and the University of British Columbia for some fine tools

Share some of yours?
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Announcements

Quiz grades are up, get quizzes back after class, or from Pooneh

Project P3 Reinforcement due Thu Nov 29th at 17:00 (Not Dec 6th.... oops)
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Outline

> Bayes Nets

Credit to Dan Klein, Stuart Russell and Andrew Moore for most of today's

slides
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Probabilistic Models

= Models describe how (a portion of) the world works

»= Models are always simplifications
= May not account for every variable
= May not account for all interactions between variables

= “All models are wrong; but some are useful.”
— George E. P. Box

= What do we do with probabilistic models?

= We (or our agents) need to reason about unknown variables,
given evidence

= Example: explanation (diagnostic reasoning)
= Example: prediction (causal reasoning)
= Example: value of information




Model for Ghostbusters

Reminder: ghost is hidden, S
Sensors are noisy Joint Distribution

T: Top sensor is red T B G P(TB,G)
B: Bottom sensor is red
G: Ghost is in the top 1

+t| +b| -g| 0.16

Queries: +t| -b| +g| 024
P(+g) =??
PE +g)| +) = 27 +t| -b| -g| 0.04

P(+g | +t, -b) = ?? -t| +b| +g| 0.04
~t| +b| -g| 0.24
~t| -b| +g| 0.06

~t| =b| -g| 0.06

Problem: joint
distribution too
large / complex




Independence

= Two variables

Ve,y . P

are independent if:
(z,y) = P(z)P(y)

= This says that their joint distribution factors into a product two
simpler distributions

= Another form:

Vo,y : P(zly) = P(z)

= Wewrite: X 1LY

» Independence

is a simplifying modeling assumption

= Empirical joint distributions: at best “close” to independent
= What could we assume for {Weather, Traffic, Cavity,

Toothache}?




Example: Independence

= N fair, independent coin flips:

P(X1) P(X>2) P(Xn)
h |05 h |05 h |05
t |os t |05 t |os
N
-

P(X1,Xo,...Xn)

——

2’]’L




Example: Independence?
P(T)
T P
warm | 0.5
P (T, W) cold | 05 Py(T, W)
T w P T w P
warm | sun | 0.4 warm [ sun | 0.3
warm | rain | 0.1 warm | rain | 0.2
cold sun | 0.2 cold sun | 0.3
cold rain | 0.3 P(W) cold rain | 0.2
w P
sun 0.6

rain 0.4




Conditional Independence

= P(Toothache, Cavity, Catch)

= |f | have a cavity, the probability that the probe catches in it doesn't
depend on whether | have a toothache:

= P(+catch | +toothache, +cavity) = P(+catch | +cavity)

= The same independence holds if | don’t have a cavity:
= P(+catch | +toothache, —cavity) = P(+catch| - cavity)

= Catch is conditionally independent of Toothache given Cavity:
= P(Catch | Toothache, Cavity) = P(Catch | Cavity)

= Equivalent statements:
= P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
= P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
= One can be derived from the other easily




Conditional Independence

Unconditional (absolute) independence very rare (why?)

Conditional independence is our most basic and robust
form of knowledge about uncertain environments:

Va,y,z : P(z,y|z) = P(z|z)P(y|z)

XUY|zZ
Vr,y, 2 P(z]z,y) = P(z]2) |

What about this domain:
= Traffic
= Umbrella

= Raining
What about fire, smoke, alarm?




The Chain Rule

P(X1,X2,... Xn) = P(X1)P(X2|X1)P(X3|X1, X2) ...
= Trivial decomposition:
P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic|Rain) P(Umbrella|Rain, Traffic)
= With assumption of conditional independence:

P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic|Rain) P(Umbrella|Rain)

= Bayes’ nets / graphical models help us express conditional

independence assumptions "




Ghostbusters Chain Rule

Each sensor depends only

on where the ghost is P(T,B,G) = P(G) P(T|G) P(B|G)
That means, the two sensors are T B G P(TB.G)
conditionally independent, given the
ghost position +t| +b| +g| 0.16

, +t| +b| -g| 0.16
T: Top square is red
B: Bottom square is red +t| -b| +g| 0.24
G: Ghost is in the top

+t| -b| -g| 0.04

Givens: -t| +b| +g| 0.04
P(+g)=0.5
PE +t I +g )): 0.8 -t| +b| -g| 0.24
P(+t |-g)=04
P(+b|+g)=0.4 ~t] ~b] +g| 0.06
P(+b]-g)=08 -t| =b| -g| 0.06




Bayes’ Nets: Big Picture

= Two problems with using full joint distribution tables as
our probabilistic models:

Unless there are only a few variables, the joint is WAY too big to
represent explicitly

Hard to learn (estimate) anything empirically about more than a
few variables at a time

= Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local distributions
(conditional probabilities)

More properly called graphical models
We describe how variables locally interact

Local interactions chain together to give global, indirect
interactions

For about 10 min, we’'ll be vague about how these interactions

are specified i




Example Bayes’ Net: Insurance
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Example Bayes’ Net: Car

dead

fuel line starter
blocked brokel




Graphical Model Notation

Nodes: variables (with domains)
= Can be assigned (observed) or

unassigned (unobserved)

Arcs: interactions
= Similar to CSP constraints

* Indicate “direct influence” between
variables

= Formally: encode conditional
independence (more later)

. . Toothache @
For now: Imagine that arrows

mean direct causation (in
general, they don’t!)
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Example: Coin Flips

* N independent coin flips

= No interactions between variables:
absolute independence
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Example: Traffic

Variables:

= R: |t rains G

= T: There is traffic

Model 1: independence °

Model 2: rain causes traffic

Why is an agent using model 2 better?
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Example: Traffic Il

» Let's build a causal graphical model

» Variables
= T: Traffic
R: It rains
L: Low pressure
D: Roof drips
B: Ballgame
C: Cavity
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Example: Alarm Network

= Variables
» B: Burglary
= A: Alarm goes off
» M: Mary calls
= J: John calls
» E: Earthquake!
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Bayes’ Net Semantics

» Let's formalize the semantics of a @ @
Bayes’ net ce

= A set of nodes, one per variable X

= A directed, acyclic graph

= A conditional distribution for each node a @

= A collection of distributions over X, one for
each combination of parents’ values

P(X|A1... A
P(Xlai...an) (X]41 n)

= CPT: conditional probability table
= Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities ’




(Caviv)
Probabilities in BNs

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

Toothache @

= To see what probability a BN gives to a full assignment, multiply

all the relevant conditionals together:

n
P(z1,22,...xp) = |] P(x;|parents(X;))
1
= Example: '

P(+-cavity, +catch, —toothache)

= This lets us reconstruct any entry of the full joint

= Not every BN can represent every joint distribution
= The topology enforces certain conditional independencies
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Example: Coin Flips

P(X1) P(X5) P(Xn)
h |05 h |05 h |05
t |05 t |05 t |os
P(h,h,t,h) =

Only distributions whose variables are absolutely independent
can be represented by a Bayes’ net with no arcs. 23




Example: Traffic

P(R)

+r

1/4

ar

3/4

P(T|R)

+r—

+t

3/4

-t

1/4

=f—

+t

1/2

-t

1/2

P(4r,—t) =

24




Example: Alarm Network

+b |0.001 @ +e |0.002
-b | 0.999 -e |0.998
B E A P(A|B,E)
tb |[+e [+a | 0.95
+b |[+e [-a | 0.05
+b |-e [+a [0.94
+a [+ |0.9 +a |[+m |0.7 -b [+e [+a |0.29
+a |- |0.1 +a |[-m |0.3 -b [+e [-a |0.71
~a [+ |0.05 -a |+m |0.01 -b |-e [+a [0.001
-a |-j |0.95 -a |-m |0.99 -b |-e |-a |0.999




Example: Traffic

= Causal direction

P(R)

r

1/4

ar

3/4

P(T|R)

P(T,R)

3/16

-t

1/16

ar

6/16

r

t 3/4

ar

-t

6/16

-t 1/4

-r

t 1/2

-t 1/2
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Example: Reverse Traffic

» Reverse causality?

P(T) P(T,R)
t 9/16

3/16

-
—

-t | 7116 r| -t |1/16
ar -t 6/16
t r 1/3
G Ar 2/3
=t r 1/7
-r 6/7 27




Causality?

= When Bayes’ nets reflect the true causal patterns:
= Often simpler (nodes have fewer parents)
= Often easier to think about
= Often easier to elicit from experts

= BNs need not actually be causal

* Sometimes no causal net exists over the domain (especially if
variables are missing)

= E.g. consider the variables Traffic and Drips
= End up with arrows that reflect correlation, not causation

= What do the arrows really mean?
= Topology may happen to encode causal structure
= Topology really encodes conditional independence

28




Bayes’ Nets

= So far: how a Bayes’ net encodes a joint distribution

= Next: how to answer queries about that distribution
= Key idea: conditional independence

* Today: assembled BNs using an intuitive notion of conditional
independence as causality

= Next: formalize these ideas

= Main goal: answer queries about conditional independence and
influence

= After that: how to answer numerical queries (inference)
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