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Appreciations

♦ Thanksgiving!!

♦ Roe McBurnett Jr and the Power of Positive Thinking

Share some of yours?
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Announcements

Project P3 Reinforcement due Thu Nov 29th at 17:00

Homework on Bayes Nets: “Green Party President”

Solution at “Green Party President solution”
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http://www-inst.eecs.berkeley.edu/~cs188/fa11/section_handouts/s7_questions.pdf
http://www-inst.eecs.berkeley.edu/~cs188/fa11/section_handouts/s7_solutions.pdf


Outline

♦ Bayes Nets, D-separation

Credit to Pieter Abbeel, Dan Klein, Stuart Russell and Andrew Moore for

most of today’s slides
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Probability recap 

  Conditional probability 

  Product rule 

  Chain rule  
 

 

 

  X, Y independent iff: 

  X and Y are conditionally independent given Z iff: 
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Bayes’ Nets 

  Representation 

  Informal first introduction of Bayes’ nets 

through causality “intuition” 

 More formal introduction of Bayes’ nets 

  Conditional Independences 

  Probabilistic Inference 

  Learning Bayes’ Nets from Data 
5 

ion 

“ ”

’



’

Build your own Bayes nets! 

  http://www.aispace.org/bayes/index.shtml 
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Size of a Bayes’ Net 

  How big is a joint distribution over N Boolean variables? 

2N 

  How big is an N-node net if nodes have up to k parents? 

O(N * 2k+1) 
 

  Both give you the power to calculate 

  BNs: Huge space savings! 

  Also easier to elicit local CPTs 

  Also turns out to be faster to answer queries (coming) 
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Bayes’ Nets 

  Representation 

  Informal first introduction of Bayes’ nets 

through causality “intuition” 

 More formal introduction of Bayes’ nets 

  Conditional Independences 

  Probabilistic Inference 

  Learning Bayes’ Nets from Data 
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Representing Joint Probability 

Distributions 

  Table representation: 

number of parameters:  dn-1 

  Chain rule representation: 

 
 

      number of parameters: (d-1) + d(d-1) + d2(d-1)+…+dn-1(d-1) =  dn-1 
 

Size of CPT = (number of different joint instantiations of the preceding variables) 
times (number of values current variable can take on minus 1) 

  Both can represent any distribution over the n random variables. 
Makes sense same number of parameters needs to be stored. 

  Chain rule applies to all orderings of the variables, so for a given 
distribution we can represent it in n! = n factorial = n(n-1)(n-2)…2.1 
different ways with the chain rule 
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Chain Rule  Bayes’ net 

  Chain rule representation: applies to ALL distributions 
  Pick any ordering of variables, rename accordingly as x1, x2, …, xn 

 

 

      number of parameters: (d-1) + d(d-1) + d2(d-1)+…+dn-1(d-1) =  dn-1 
 

  Bayes’ net representation: makes assumptions 
  Pick any ordering of variables, rename accordingly as x1, x2, …, xn 

  Pick any directed acyclic graph consistent with the ordering 

  Assume following conditional independencies: 

 Joint: 

  number of parameters: (maximum number of parents = K) 

 
 
 

    Note: no causality assumption made anywhere. 
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P (xi|x1 · · ·xi−1) = P (xi|parents(Xi))

Exponential 

in n 

Linear 

in n 



Causality? 

  When Bayes’ nets reflect the true causal patterns: 
  Often simpler (nodes have fewer parents) 

  Often easier to think about 

  Often easier to elicit from experts 

  BNs need not actually be causal 
  Sometimes no causal net exists over the domain 

  E.g. consider the variables Traffic and Drips 

  End up with arrows that reflect correlation, not causation 

  What do the arrows really mean? 
  Topology may happen to encode causal structure 

  Topology only guaranteed to encode conditional independence 
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Example: Traffic 

  Basic traffic net 

  Let’s multiply out the joint 

R
 

T
 

   r 1/4 

¬r 3/4 

 r    t 3/4 

¬t 1/4 

¬r    t 1/2 

¬t 1/2 

   r    t 3/16 

   r ¬t 1/16 

¬r    t 6/16 

¬r ¬t 6/16 
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Example: Reverse Traffic 

  Reverse causality? 

T
 

R
 

   t 9/16 

¬t 7/16 

 t    r 1/3 

¬r 2/3 

¬t    r 1/7 

¬r 6/7 

   r    t 3/16 

   r ¬t 1/16 

¬r    t 6/16 

¬r ¬t 6/16 
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Example: Coins 

  Extra arcs don’t prevent representing 

independence, just allow non-independence 

h 0.5 

t 0.5 

h 0.5 

t 0.5 

X
1 

X
2 

h 0.5 

t 0.5 

h | h 0.5 

t | h 0.5 

X
1 

X
2 

h | t 0.5 

t | t 0.5 
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  Adding unneeded arcs isn’t 

wrong, it’s just inefficient 



Bayes’ Nets 

  Representation 

  Informal first introduction of Bayes’ nets 

through causality “intuition” 

 More formal introduction of Bayes’ nets 

  Conditional Independences 

  Probabilistic Inference 

  Learning Bayes’ Nets from Data 
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Bayes Nets: Assumptions 

  To go from chain rule to Bayes’ net representation, we 
made the following assumption about the distribution: 

  Turns out that probability distributions that satisfy the above 

(“chain-ruleBayes net”) conditional independence 

assumptions  

  often can be guaranteed to have many more conditional 

independences 

  These guaranteed additional conditional independences can be 

read off directly from the graph 

  Important for modeling: understand assumptions made 

when choosing a Bayes net graph 
30 

P (xi|x1 · · ·xi−1) = P (xi|parents(Xi))



Example 

  Conditional independence assumptions directly from 
simplifications in chain rule: 

  Additional implied conditional independence 

assumptions? 
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Independence in a BN 

  Given a Bayes net graph 

  Important question:  

 Are two nodes guaranteed to be independent given 
 certain evidence? 

 

Equivalent question: 
 

 Are two nodes independent given the evidence in all 
 distributions that can be encoded with the Bayes 
 net graph? 

 

  Before proceeding: How about opposite question: Are 
two nodes guaranteed to be dependent given certain 
evidence? 
  No!  For any BN graph you can choose all CPT’s such that all 

variables are independent by having P(X | Pa(X) = paX) not 
depend on the value of the parents.  Simple way of doing so: pick 
all entries in all CPTs equal to 0.5 (assuming binary variables) 



Independence in a BN 

  Given a Bayes net graph 
 Are two nodes guaranteed to be 
 independent given certain evidence? 
  

  If no, can prove with a counter example 
  I.e., pick a distribution that can be encoded with 

the BN graph, i.e., pick a set of CPT’s, and show 
that the independence assumption is violated 

  If yes,  
 For now we are able to prove using algebra 

(tedious in general) 

 Next we will study an efficient graph-based 
method to prove yes: “D-separation” 
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D-separation: Outline 

  Study independence properties for triples 

  Any complex example can be analyzed by 

considering relevant triples 
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Causal Chains 

  This configuration is a “causal chain” 

  Is it guaranteed that X is independent of Z ?   No! 

  One example set of CPTs for which X is not independent of Z is 
sufficient to show this independence is not guaranteed. 

  Example: P(y|x) = 1  if y=x, 0 otherwise 

        P(z|y) = 1  if z=y, 0 otherwise 

   Then we have P(z|x) = 1  if z=x, 0 otherwise 

    hence X and Z are not independent in this example  

 

X Y Z 

X: Low pressure 

Y: Rain 

Z: Traffic 
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Causal Chains 

  This configuration is a “causal chain” 

  Is it guaranteed that X is independent of Z given Y? 

  Evidence along the chain “blocks” the influence 

X Y Z 

Yes! 

X: Low pressure 

Y: Rain 

Z: Traffic 
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Common Cause 

  Another basic configuration: two 
effects of the same cause 

  Is it guaranteed that X and Z are 
independent? 

  No! 

  Counterexample:  

Choose P(X|Y)=1 if x=y, 0 otherwise,  

Choose P(z|y) = 1 if z=y, 0 otherwise.   

Then P(x|z)=1 if x=z and 0 otherwise, hence X 
and Z are not independent in this example and 
hence it is not guaranteed that if a distribution can 
be encoded with the Bayes’ net structure on the 
right that X and Z are independent in that 
distribution 

X 

Y 

Z 

Y: Project due 

X: Piazza busy 

Z: Lab full 
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Common Cause 

  Another basic configuration: two 
effects of the same cause 

  Is it guaranteed that X and Z are 
independent given Y? 

  Observing the cause blocks influence 
between effects. 

X 

Y 

Z 

Yes! 

Y: Project due 

X: Piazza busy 

Z: Lab full 
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Common Effect 

  Last configuration: two causes of 

one effect (v-structures) 

  Are X and Z independent? 

  Yes: the ballgame and the rain cause traffic, 

but they are not correlated 

  Still need to prove they must be (try it!) 

  Are X and Z independent given Y? 

  No: seeing traffic puts the rain and the 

ballgame in competition as explanation? 

  This is backwards from the other cases 

  Observing an effect activates influence 

between possible causes. 

X 

Y 

Z 

X: Raining 

Z: Ballgame 

Y: Traffic 
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Reachability (D-Separation) 

  Question: Are X and Y 
conditionally independent 
given evidence vars {Z}? 

  Yes, if X and Y “separated” by Z 
  Consider all (undirected) paths 

from X to Y 

  No active paths = independence! 

  A path is active if each triple 
is active: 
  Causal chain A → B → C where B 

is unobserved (either direction) 

  Common cause A ← B → C 
where B is unobserved 

  Common effect (aka v-structure) 

 A → B ← C where B or one of its 
descendents is observed 
  

  All it takes to block a path is 
a single inactive segment 
 

Active Triples Inactive Triples 



D-Separation 

  Given query          

  Shade all evidence nodes 

  For all (undirected!) paths between and  

 Check whether path is active 

  If active return:  

    not guaranteed that 
 

  (If reaching this point all paths have been 

checked and shown inactive) 
  Return: guaranteed tat  
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Xi ⊥⊥ Xj |{Xk1
, ..., Xkn

}

Xi ⊥⊥ Xj |{Xk1
, ..., Xkn

}

? 

Xi ⊥⊥ Xj |{Xk1
, ..., Xkn

}
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Example 

Yes 
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Example 

R
 

T
 

B 

D
 

L 

T’ 

Yes 

Yes 

Yes 
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Example 

  Variables: 

 R: Raining 

  T: Traffic 

 D: Roof drips 

  S: I’m sad 

  Questions: 

T
 

S 

D 

R 

Yes 
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All Conditional Independences 

  Given a Bayes net structure, can run d-

separation to build a complete list of 

conditional independences that are 

guaranteed to be true, all of the form 
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Xi ⊥⊥ Xj |{Xk1
, ..., Xkn

}
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Possible to have same full list of conditional 

independencies for different BN graphs? 

  Yes! 

  Examples: 

  If two Bayes’ Net graphs have the same full list 

of conditional independencies then they are able 

to encode the same set of distributions. 46 



Topology Limits Distributions 

  Given some graph 

topology G, only certain 

joint distributions can 

be encoded 

  The graph structure 
guarantees certain 

(conditional) 

independences 

  (There might be more 

independence) 

  Adding arcs increases 

the set of distributions, 

but has several costs 

  Full conditioning can 

encode any distribution 

X 

Y 

Z 

X 

Y 

Z 

X 

Y 

Z 
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Bayes Nets Representation Summary 

  Bayes nets compactly encode joint distributions 

  Guaranteed independencies of distributions can 
be deduced from BN graph structure 

  D-separation gives precise conditional 
independence guarantees from graph alone 

  A Bayes’ net’s joint distribution may have 
further (conditional) independence that is not 
detectable until you inspect its specific 
distribution 
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Bayes’ Nets 

  Representation 

  Conditional Independences 

  Probabilistic Inference 

  Enumeration (exact, exponential complexity) 

  Variable elimination (exact, worst-case 

exponential complexity, often better) 

  Probabilistic inference is NP-complete 

  Sampling (approximate) 

  Learning Bayes’ Nets from Data 53 




