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Appreciations

♦ Thanksgiving!!

♦ Roe McBurnett Jr and the Power of Positive Thinking

Share some of yours?
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Announcements

Project P3 Reinforcement due Thu Nov 29th at 17:00

Homework on Bayes Nets: “Green Party President”

Solution at “Green Party President solution”
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http://www-inst.eecs.berkeley.edu/~cs188/fa11/section_handouts/s7_questions.pdf
http://www-inst.eecs.berkeley.edu/~cs188/fa11/section_handouts/s7_solutions.pdf


Outline

♦ Bayes Nets, D-separation

Credit to Pieter Abbeel, Dan Klein, Stuart Russell and Andrew Moore for

most of today’s slides
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Probability recap 

  Conditional probability 

  Product rule 

  Chain rule  
 

 

 

  X, Y independent iff: 

  X and Y are conditionally independent given Z iff: 
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Bayes’ Nets 

  Representation 

  Informal first introduction of Bayes’ nets 

through causality “intuition” 

 More formal introduction of Bayes’ nets 

  Conditional Independences 

  Probabilistic Inference 

  Learning Bayes’ Nets from Data 
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Build your own Bayes nets! 

  http://www.aispace.org/bayes/index.shtml 
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Size of a Bayes’ Net 

  How big is a joint distribution over N Boolean variables? 

2N 

  How big is an N-node net if nodes have up to k parents? 

O(N * 2k+1) 
 

  Both give you the power to calculate 

  BNs: Huge space savings! 

  Also easier to elicit local CPTs 

  Also turns out to be faster to answer queries (coming) 
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Bayes’ Nets 

  Representation 

  Informal first introduction of Bayes’ nets 

through causality “intuition” 

 More formal introduction of Bayes’ nets 

  Conditional Independences 

  Probabilistic Inference 

  Learning Bayes’ Nets from Data 
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Representing Joint Probability 

Distributions 

  Table representation: 

number of parameters:  dn-1 

  Chain rule representation: 

 
 

      number of parameters: (d-1) + d(d-1) + d2(d-1)+…+dn-1(d-1) =  dn-1 
 

Size of CPT = (number of different joint instantiations of the preceding variables) 
times (number of values current variable can take on minus 1) 

  Both can represent any distribution over the n random variables. 
Makes sense same number of parameters needs to be stored. 

  Chain rule applies to all orderings of the variables, so for a given 
distribution we can represent it in n! = n factorial = n(n-1)(n-2)…2.1 
different ways with the chain rule 
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Chain Rule  Bayes’ net 

  Chain rule representation: applies to ALL distributions 
  Pick any ordering of variables, rename accordingly as x1, x2, …, xn 

 

 

      number of parameters: (d-1) + d(d-1) + d2(d-1)+…+dn-1(d-1) =  dn-1 
 

  Bayes’ net representation: makes assumptions 
  Pick any ordering of variables, rename accordingly as x1, x2, …, xn 

  Pick any directed acyclic graph consistent with the ordering 

  Assume following conditional independencies: 

 Joint: 

  number of parameters: (maximum number of parents = K) 

 
 
 

    Note: no causality assumption made anywhere. 
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P (xi|x1 · · ·xi−1) = P (xi|parents(Xi))

Exponential 

in n 

Linear 

in n 



Causality? 

  When Bayes’ nets reflect the true causal patterns: 
  Often simpler (nodes have fewer parents) 

  Often easier to think about 

  Often easier to elicit from experts 

  BNs need not actually be causal 
  Sometimes no causal net exists over the domain 

  E.g. consider the variables Traffic and Drips 

  End up with arrows that reflect correlation, not causation 

  What do the arrows really mean? 
  Topology may happen to encode causal structure 

  Topology only guaranteed to encode conditional independence 
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Example: Traffic 

  Basic traffic net 

  Let’s multiply out the joint 

R
 

T
 

   r 1/4 

¬r 3/4 

 r    t 3/4 

¬t 1/4 

¬r    t 1/2 

¬t 1/2 

   r    t 3/16 

   r ¬t 1/16 

¬r    t 6/16 

¬r ¬t 6/16 
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Example: Reverse Traffic 

  Reverse causality? 

T
 

R
 

   t 9/16 

¬t 7/16 

 t    r 1/3 

¬r 2/3 

¬t    r 1/7 

¬r 6/7 

   r    t 3/16 

   r ¬t 1/16 

¬r    t 6/16 

¬r ¬t 6/16 
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Example: Coins 

  Extra arcs don’t prevent representing 

independence, just allow non-independence 

h 0.5 

t 0.5 

h 0.5 

t 0.5 

X
1 

X
2 

h 0.5 

t 0.5 

h | h 0.5 

t | h 0.5 

X
1 

X
2 

h | t 0.5 

t | t 0.5 
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  Adding unneeded arcs isn’t 

wrong, it’s just inefficient 



Bayes’ Nets 

  Representation 

  Informal first introduction of Bayes’ nets 

through causality “intuition” 

 More formal introduction of Bayes’ nets 

  Conditional Independences 

  Probabilistic Inference 

  Learning Bayes’ Nets from Data 
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Bayes Nets: Assumptions 

  To go from chain rule to Bayes’ net representation, we 
made the following assumption about the distribution: 

  Turns out that probability distributions that satisfy the above 

(“chain-ruleBayes net”) conditional independence 

assumptions  

  often can be guaranteed to have many more conditional 

independences 

  These guaranteed additional conditional independences can be 

read off directly from the graph 

  Important for modeling: understand assumptions made 

when choosing a Bayes net graph 
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P (xi|x1 · · ·xi−1) = P (xi|parents(Xi))



Example 

  Conditional independence assumptions directly from 
simplifications in chain rule: 

  Additional implied conditional independence 

assumptions? 
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Independence in a BN 

  Given a Bayes net graph 

  Important question:  

 Are two nodes guaranteed to be independent given 
 certain evidence? 

 

Equivalent question: 
 

 Are two nodes independent given the evidence in all 
 distributions that can be encoded with the Bayes 
 net graph? 

 

  Before proceeding: How about opposite question: Are 
two nodes guaranteed to be dependent given certain 
evidence? 
  No!  For any BN graph you can choose all CPT’s such that all 

variables are independent by having P(X | Pa(X) = paX) not 
depend on the value of the parents.  Simple way of doing so: pick 
all entries in all CPTs equal to 0.5 (assuming binary variables) 



Independence in a BN 

  Given a Bayes net graph 
 Are two nodes guaranteed to be 
 independent given certain evidence? 
  

  If no, can prove with a counter example 
  I.e., pick a distribution that can be encoded with 

the BN graph, i.e., pick a set of CPT’s, and show 
that the independence assumption is violated 

  If yes,  
 For now we are able to prove using algebra 

(tedious in general) 

 Next we will study an efficient graph-based 
method to prove yes: “D-separation” 

e 



D-separation: Outline 

  Study independence properties for triples 

  Any complex example can be analyzed by 

considering relevant triples 
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Causal Chains 

  This configuration is a “causal chain” 

  Is it guaranteed that X is independent of Z ?   No! 

  One example set of CPTs for which X is not independent of Z is 
sufficient to show this independence is not guaranteed. 

  Example: P(y|x) = 1  if y=x, 0 otherwise 

        P(z|y) = 1  if z=y, 0 otherwise 

   Then we have P(z|x) = 1  if z=x, 0 otherwise 

    hence X and Z are not independent in this example  

 

X Y Z 

X: Low pressure 

Y: Rain 

Z: Traffic 
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Causal Chains 

  This configuration is a “causal chain” 

  Is it guaranteed that X is independent of Z given Y? 

  Evidence along the chain “blocks” the influence 

X Y Z 

Yes! 

X: Low pressure 

Y: Rain 

Z: Traffic 
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Common Cause 

  Another basic configuration: two 
effects of the same cause 

  Is it guaranteed that X and Z are 
independent? 

  No! 

  Counterexample:  

Choose P(X|Y)=1 if x=y, 0 otherwise,  

Choose P(z|y) = 1 if z=y, 0 otherwise.   

Then P(x|z)=1 if x=z and 0 otherwise, hence X 
and Z are not independent in this example and 
hence it is not guaranteed that if a distribution can 
be encoded with the Bayes’ net structure on the 
right that X and Z are independent in that 
distribution 

X 

Y 

Z 

Y: Project due 

X: Piazza busy 

Z: Lab full 
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Common Cause 

  Another basic configuration: two 
effects of the same cause 

  Is it guaranteed that X and Z are 
independent given Y? 

  Observing the cause blocks influence 
between effects. 

X 

Y 

Z 

Yes! 

Y: Project due 

X: Piazza busy 

Z: Lab full 
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Common Effect 

  Last configuration: two causes of 

one effect (v-structures) 

  Are X and Z independent? 

  Yes: the ballgame and the rain cause traffic, 

but they are not correlated 

  Still need to prove they must be (try it!) 

  Are X and Z independent given Y? 

  No: seeing traffic puts the rain and the 

ballgame in competition as explanation? 

  This is backwards from the other cases 

  Observing an effect activates influence 

between possible causes. 

X 

Y 

Z 

X: Raining 

Z: Ballgame 

Y: Traffic 
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Reachability (D-Separation) 

  Question: Are X and Y 
conditionally independent 
given evidence vars {Z}? 

  Yes, if X and Y “separated” by Z 
  Consider all (undirected) paths 

from X to Y 

  No active paths = independence! 

  A path is active if each triple 
is active: 
  Causal chain A → B → C where B 

is unobserved (either direction) 

  Common cause A ← B → C 
where B is unobserved 

  Common effect (aka v-structure) 

 A → B ← C where B or one of its 
descendents is observed 
  

  All it takes to block a path is 
a single inactive segment 
 

Active Triples Inactive Triples 



D-Separation 

  Given query          

  Shade all evidence nodes 

  For all (undirected!) paths between and  

 Check whether path is active 

  If active return:  

    not guaranteed that 
 

  (If reaching this point all paths have been 

checked and shown inactive) 
  Return: guaranteed tat  
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Xi ⊥⊥ Xj |{Xk1
, ..., Xkn

}

Xi ⊥⊥ Xj |{Xk1
, ..., Xkn

}

? 

Xi ⊥⊥ Xj |{Xk1
, ..., Xkn

}
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Example 

Yes 
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Example 

R
 

T
 

B 

D
 

L 

T’ 

Yes 

Yes 

Yes 
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Example 

  Variables: 

 R: Raining 

  T: Traffic 

 D: Roof drips 

  S: I’m sad 

  Questions: 

T
 

S 

D 

R 

Yes 
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All Conditional Independences 

  Given a Bayes net structure, can run d-

separation to build a complete list of 

conditional independences that are 

guaranteed to be true, all of the form 
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Xi ⊥⊥ Xj |{Xk1
, ..., Xkn

}
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Possible to have same full list of conditional 

independencies for different BN graphs? 

  Yes! 

  Examples: 

  If two Bayes’ Net graphs have the same full list 

of conditional independencies then they are able 

to encode the same set of distributions. 46 



Topology Limits Distributions 

  Given some graph 

topology G, only certain 

joint distributions can 

be encoded 

  The graph structure 
guarantees certain 

(conditional) 

independences 

  (There might be more 

independence) 

  Adding arcs increases 

the set of distributions, 

but has several costs 

  Full conditioning can 

encode any distribution 

X 

Y 

Z 

X 

Y 

Z 

X 

Y 

Z 
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Bayes Nets Representation Summary 

  Bayes nets compactly encode joint distributions 

  Guaranteed independencies of distributions can 
be deduced from BN graph structure 

  D-separation gives precise conditional 
independence guarantees from graph alone 

  A Bayes’ net’s joint distribution may have 
further (conditional) independence that is not 
detectable until you inspect its specific 
distribution 
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Bayes’ Nets 

  Representation 

  Conditional Independences 

  Probabilistic Inference 

  Enumeration (exact, exponential complexity) 

  Variable elimination (exact, worst-case 

exponential complexity, often better) 

  Probabilistic inference is NP-complete 

  Sampling (approximate) 

  Learning Bayes’ Nets from Data 53 




