BAYES NETS 2

CH. 14.1-2.4

Adapted from slides kindly shared by Stuart Russell
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Appreciations

> Thanksgiving!!

> Roe McBurnett Jr and the Power of Positive Thinking

Share some of yours?
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Announcements

Project P3 Reinforcement due Thu Nov 29th at 17:00
Homework on Bayes Nets: “Green Party President”

Solution at “Green Party President solution”
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http://www-inst.eecs.berkeley.edu/~cs188/fa11/section_handouts/s7_questions.pdf
http://www-inst.eecs.berkeley.edu/~cs188/fa11/section_handouts/s7_solutions.pdf

Outline

> Bayes Nets, D-separation

Credit to Pieter Abbeel, Dan Klein, Stuart Russell and Andrew Moore for

most of today's slides

Ch. 14.1-2,4
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Probability recap

P(x,y)
P(y)

Conditional probability P(zly) =
Product rule P(z,y) = P(zly)P(y)

Chain rule P(X1,X2,...Xn) = P(X1)P(X2|X1)P(X3|X1,X2)..
n
= H P(X;| X1, ., Xi—1)

i=1

X, Y independent iff:  Vz,y: P(z,y) = P(z)P(y)

Xand Y are conditionally independent given Z iff:
Vz,y,z 1 P(z,y|z) = P(z|z)P(y|z) XUY|Z .,




Bayes’ Nets

Representation
» Informal first introduction of Bayes’ nets

through causality “intuition”
» More formal introduction of Bayes’ nets
Conditional Independences

Probabilistic Inference

Learning Bayes’ Nets from Data




Build your own Bayes nets!

= http://www.aispace.org/bayes/index.shtml




Size of a Bayes’ Net

How big is a joint distribution over N Boolean variables?

2N

How big is an N-node net if nodes have up to k parents?

O(N * 2k+1)

Both give you the power to calculate P(X7, Xo,...Xn)
BNs: Huge space savings!

Also easier to elicit local CPTs

Also turns out to be faster to answer queries (coming)
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Bayes’ Nets

= Representation
Jlnformal first introduction of Bayes’ nets

through causality “intuition”
= More formal introduction of Bayes’ nets
= Conditional Independences

= Probabilistic Inference

» Learning Bayes’ Nets from Data
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Representing Joint Probability
Distributions

Table representation:

number of parameters: dr-1

Chain rule representation:

n
P(z1,x2,...2n) = [[ P(mi|lz1 ... 2i—1)
=1
number of parameters: (d-1) + d(d-1) + d3(d-1)+...+d™"(d-1) = dn-1

Size of CPT = (number of different joint instantiations of the preceding variables)
times (number of values current variable can take on minus 1)

Both can represent any distribution over the n random variables.
Makes sense same number of parameters needs to be stored.

Chain rule applies to all orderings of the variables, so for a given
distribution we can represent it in n! = n factorial = n(n-1)(n-2)...2.1 23
different ways with the chain rule




Chain Rule - Bayes’ net

= Chain rule representation: applies to ALL distributions
= Pick any ordering of variables, rename accordingly as x4, X,, ..., X,

P((L’]_,CUQ,....Q?TL) =HP(CUZ|IL’1(IZZ_1) Expio:intlal
i

number of parameters: (d-1) + d(d-1) + d?(d-1)+...+d™"(d-1) = dn-1

= Bayes’ net representation: makes assumptions
= Pick any ordering of variables, rename accordingly as X, Xy, ..., X,
= Pick any directed acyclic graph consistent with the ordering
= Assume following conditional independencies:

P(x;|xy -+ xi-1) = P(x;|parents(X;))
n
int: P(xzq1,20,... = P(x;|parents(X; .
> Joint: P(x1,22,...2n) i];[l (x| p (X)) Linear
number of parameters: (maximum number of parents = K) inn
5 24
Zd|par(zuts(xl')|(d _ 1) = O(ndK(d _ 1)) - O(’I’LdK+1)

i=1
Note: no causality assumption made anywhere.




Causality?

= When Bayes’ nets reflect the true causal patterns:
» Often simpler (nodes have fewer parents)
= Often easier to think about
= Often easier to elicit from experts

= BNs need not actually be causal
= Sometimes no causal net exists over the domain
= E.g. consider the variables Traffic and Drips
= End up with arrows that reflect correlation, not causation

= What do the arrows really mean?
= Topology may happen to encode causal structure
= Topology only guaranteed to encode conditional independence
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Example: Traffic

= Basic traffic net

= Let’ s multiply out the joint

P(R)

r
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Example: Reverse Traffic

= Reverse causality?

O,

P(T)

t

9/16
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P(R|T)
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Example: Coins

= Extra arcs don’t prevent representing
independence, just allow non-independence

® & O

P(X1) P(X>) P(Xy1)  P(X2|X31)

h 0.5 h 0.5 h 0.5 hih | 0.5

t 0.5 t 0.5 t 0.5 t|h | 0.5

_ o hit | 05

* Adding unneeded arcs isn 't t[t | 05

wrong, it’ s just inefficient




Bayes’ Nets

» Representation
/Informal first introduction of Bayes’ nets

through causality “intuition”
«/More formal introduction of Bayes’ nets
= Conditional Independences

= Probabilistic Inference

= Learning Bayes’ Nets from Data
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Bayes Nets: Assumptions

»= To go from chain rule to Bayes’ net representation, we
made the following assumption about the distribution:

P(x;|xy - x-1) = P(x;|parents(X;))

» Turns out that probability distributions that satisfy the above
(“chain-rule>Bayes net”) conditional independence
assumptions

= often can be guaranteed to have many more conditional
independences

= These guaranteed additional conditional independences can be
read off directly from the graph

» Important for modeling: understand assumptions made

30
when choosing a Bayes net graph




Example

= Conditional independence assumptions directly from
simplifications in chain rule:

= Additional implied conditional independence

assumptions?
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Independence in a BN

= Given a Bayes net graph
= Important question:
Are two nodes guaranteed to be independent given
certain evidence?

Equivalent question:

Are two nodes independent given the evidence in all
distributions that can be encoded with the Bayes
net graph?

= Before proceeding: How about opposite question: Are
two nodes guaranteed to be dependent given certain

evidence?
= No! For any BN graph you can choose all CPT’s such that all
variables are independent by having P(X | Pa(X) = paX) not
depend on the value of the parents. Simple way of doing so: pick
all entries in all CPTs equal to 0.5 (assuming binary variables)




Independence in a BN

= Given a Bayes net graph

Are two nodes guaranteed to be
independent given certain evidence?

= If no, can prove with a counter example

= |.e., pick a distribution that can be encoded with
the BN graph, i.e., pick a set of CPT’s, and show
that the independence assumption is violated

= If yes,

= For now we are able to prove using algebra
(tedious in general)

= Next we will study an efficient graph-based
method to prove yes: “D-separation”




D-separation: Outline

= Study independence properties for triples

= Any complex example can be analyzed by

considering relevant triples
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Causal Chains

= This configuration is a “causal chain”
X: Low pressure

Z: Traffic
P(z,y,z) = P(z)P(y|lz) P(z|y)
» |s it guaranteed that X is independent of Z? No!

= One example set of CPTs for which X is not independent of Z is
sufficient to show this independence is not guaranteed.

= Example: P(y|x) = 1 if y=x, 0 otherwise
P(zly) = 1 if z=y, 0 otherwise
Then we have P(z|x) = 1 if z=x, 0 otherwise
hence X and Z are not independent in this example 35




Causal Chains

= This configuration is a “causal chain”
X: Low pressure

Z: Traffic
P(z,y,2z) = P(z)P(y|lz) P(z|y)

= |s it guaranteed that X is independent of Z given Y?

P(z,y,2) _ P(z)P(y|z) P(z|y)
P(z,y) P(z)P(y|x)

= P(z]y) Yes!

P(zlz,y) =

= Evidence along the chain “blocks” the influence




Common Cause

= Another basic configuration: two
effects of the same cause

» |s it guaranteed that X and Z are

independent?
= No! Y: Project due
= Counterexample: X: Piazza busy
Choose P(X|Y)=1 if x=y, 0 otherwise, Z: Lab full

Choose P(z|y) = 1 if z=y, 0 otherwise.

Then P(x|z)=1 if x=z and 0 otherwise, hence X

and Z are not independent in this example and

hence it is not guaranteed that if a distribution can

be encoded with the Bayes’ net structure on the

right that X and Z are independent in that 37
distribution




Common Cause

= Another basic configuration: two
effects of the same cause

» |s it guaranteed that X and Z are
independent given Y?

P(x,y,z) _ P(y)P(zly)P(z|y) ;z I:OjeCtsue
o : Piazza bus
P(z,y) P(y)P(zly) y

= P(zly) Yes!

P(zlz,y) =

Z: Lab full

= Observing the cause blocks influence

between effects.
38




Common Effect

» | ast configuration: two causes of
one effect (v-structures)
= Are X and Z independent?

= Yes: the ballgame and the rain cause traffic,
but they are not correlated

= Still need to prove they must be (try it!)
= Are X and Z independent given Y?

i i i X: Raini
= No: seeing traffic puts the rain and the aining
ballgame in competition as explanation? Z: Ballgame
= This is backwards from the other cases Y: Traffic

= Observing an effect activates influence
between possible causes.
39




Reachability (D-Separation)

Question: Are X and Y
conditionally independent
given evidence vars {Z}?

Yes, if Xand Y “separated” by Z

Consider all (undirected) paths
from XtoY

No active paths = independence!

= A path is active if each triple
is active:

Causal chain A — B — C where B
is unobserved (either direction)

Common cause A<~ B —C
where B is unobserved

Common effect (aka v-structure)

A — B < C where B or one of its
descendents is observed

= All it takes to block a path is
a single inactive segment

Active Triples

O-~0O-0

e
e

Inactive Triples

O-@-O
oo
o




D-Separation

= Given query X; ! X;|{X4,,..., X&,}
= Shade all evidence nodes

= For all (undirected!) paths between and

= Check whether path is active
= |f active return:

notguaranteed that  X; Il X, |{Xk,,..., Xg, }

= (If reaching this point all paths have been
checked and shown inactive)
= Return: guaranteed tat X; 1l X;[{ Xy, ,..., Xp,}




Example

RI B
RILB|T
RALB|T’

Yes
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Example

LUT|T Yes
LB Yes
L1 B|T
L1 B|T'
LI B|T,R Yes




Example

= Variables:
» R: Raining
= T: Traffic
= D: Roof drips
» S:I’'m sad
= Questions:
T D
T D|R
T1.D|R,S

Yes
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All Conditional Independences

= Given a Bayes net structure, can run d-
separation to build a complete list of
conditional independences that are
guaranteed to be true, all of the form

X U Xi{ Xk, Xk, }
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Possible to have same full list of conditional
independencies for different BN graphs?

* Yes!
= Examples:

= |If two Bayes’ Net graphs have the same full list
of conditional independencies then they are able
to encode the same set of distributions. s




Topology Limits Distributions

Given some graph
topology G, only certain
joint distributions can
be encoded

The graph structure
guarantees certain
(conditional)
independences
(There might be more
independence)
Adding arcs increases
the set of distributions,
but has several costs
Full conditioning can
encode any distribution

©
® @
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Bayes Nets Representation Summary

» Bayes nets compactly encode joint distributions

» Guaranteed independencies of distributions can
be deduced from BN graph structure

» D-separation gives precise conditional
independence guarantees from graph alone

= A Bayes’ net’ s joint distribution may have
further (conditional) independence that is not
detectable until you inspect its specific

distribution *




Bayes’ Nets

&/ Representation
& Conditional Independences

» Probabilistic Inference
» Enumeration (exact, exponential complexity)

» Variable elimination (exact, worst-case
exponential complexity, often better)

» Probabilistic inference is NP-complete
= Sampling (approximate)

= Learning Bayes’ Nets from Data 53







