Bayes Nets 3

Сн. 14.4

Adapted from slides kindly shared by Stuart Russell

Ch. 14.4 1

Appreciations

- \diamondsuit My uncle Pat, passed away yesterday after years of Alzheimer's
- \diamond Family, gathered for Thanksgiving
- \diamondsuit Language and evidence of the past

Share some of yours?

Announcements

Project P1 grades are up on D2L, with extra credit, early bonus, late add-ons, etc.

Project P3 Reinforcement due Thu Nov 29th at 17:00

Outline

 \diamond Bayes Nets, Exact Inference, Variable Elimination

Credit to Dan Klein, Stuart Russell and Andrew Moore for most of today's slides

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

 $P(X|a_1\ldots a_n)$

- CPT: conditional probability table
- Description of a noisy "causal" process

Probabilities in BNs

- For all joint distributions, we have (chain rule): $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | x_1, \dots, x_{i-1})$
- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

All Conditional Independences

 Given a Bayes net structure, can run dseparation to build a complete list of conditional independences that are necessarily true of the form

$$X_i \perp \!\!\perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

 This list determines the set of probability distributions that can be represented

Same Assumptions, Different Graphs?

- Can you have two different graphs that encode the same assumptions?
 - Yes!
 - Examples:

Example: Independence

For this graph, you can fiddle with θ (the CPTs) all you want, but you won't be able to represent any distribution in which the flips are dependent!

$P(X_1)$		$P(X_2)$	
h	0.5	h	0.5
t	0.5	t	0.5

Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology only guaranteed to encode conditional independence
- *More about causality: [Causility Judea Pearl]

Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

Inference

- Inference: calculating some useful quantity from a joint probability distribution
- Examples:
 - Posterior probability:

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

Most likely explanation:

 $\operatorname{argmax}_q P(Q = q | E_1 = e_1 \ldots)$

Inference by Enumeration

- Given unlimited time, inference in BNs is easy
- Recipe:
 - State the marginal probabilities you need
 - Figure out ALL the atomic probabilities you need
 - Calculate and combine them
- Example:

$$P(+b|+j,+m) = \frac{P(+b,+j,+m)}{P(+j,+m)}$$

17

Example: Enumeration

 In this simple method, we only need the BN to synthesize the joint entries

$$P(+b,+j,+m) = P(+b)P(+e)P(+a|+b,+e)P(+j|+a)P(+m|+a) + P(+b)P(+e)P(-a|+b,+e)P(+j|-a)P(+m|-a) + P(+b)P(-e)P(+a|+b,-e)P(+j|+a)P(+m|+a) + P(+b)P(-e)P(-a|+b,-e)P(+j|-a)P(+m|-a)$$

Inference by Enumeration?

19

Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables
 - You end up repeating a lot of work!
- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration
- We'll need some new notation to define VE

Factor Zoo I

Joint distribution: P(X,Y)

- Entries P(x,y) for all x, y
- Sums to 1

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Selected joint: P(x,Y)

- A slice of the joint distribution
- Entries P(x,y) for fixed x, all y
- Sums to P(x)

P(cold,	W)
---------	----

Т	W	Р
cold	sun	0.2
cold	rain	0.3

Factor Zoo II

- Family of conditionals: P(X |Y)
 - Multiple conditionals
 - Entries P(x | y) for all x, y
 - Sums to |Y|

$$\begin{array}{c|c} P(W|T) \\ \hline T & W & P \\ \hline hot & sun & 0.8 \\ \hline hot & rain & 0.2 \\ \hline cold & sun & 0.4 \\ \hline cold & rain & 0.6 \\ \hline \end{array} \right] P(W|hot)$$

- Single conditional: P(Y | x)
 - Entries P(y | x) for fixed x, all y
 - Sums to 1

Т	W	Р
cold	sun	0.4
cold	rain	0.6

Factor Zoo III

- Specified family: P(y | X)
 - Entries P(y | x) for fixed y, but for all x
 - Sums to ... who knows!

Т	W	Ρ	
hot	rain	0.2	P(rain hot)
cold	rain	0.6	P(rain cold)

- In general, when we write P(Y₁ ... Y_N | X₁ ... X_M)
 - It is a "factor," a multi-dimensional array
 - Its values are all P(y₁ ... y_N | x₁ ... x_M)
 - Any assigned X or Y is a dimension missing (selected) from the array

Example: Traffic Domain

- Random Variables
 - R: Raining
 - T: Traffic
 - L: Late for class!
- First query: P(L)

24

Variable Elimination Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

P(R)		
+r	0.1	
-r	0.9	

P(T	R)
P(T	

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

P(L|T)

+	0.3
-	0.7
+	0.1
-	0.9
	-1

- Any known values are selected
 - E.g. if we know $L = +\ell$, the initial factors are

P(R)		
0.1		
0.9		

$$\begin{array}{c|c} P(T|R) \\ \hline +r & +t & 0.8 \\ +r & -t & 0.2 \\ \hline -r & +t & 0.1 \\ \hline -r & -t & 0.9 \end{array}$$

$$\frac{P(+\ell|T)}{\frac{+t}{-t} + \frac{1}{-1} 0.3}$$

VE: Alternately join factors and eliminate variables

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - Just like a database join
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved
- Example: Join on R

Example: Multiple Joins

28

Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
 - Shrinks a factor to a smaller one
 - A projection operation
- Example:

Multiple Elimination

(R, T, L)

P(R,T,L)

+r	+t	+	0.024
+r	+t	-	0.056
+r	-t	+	0.002
+r	-t	-	0.018
-r	+t	+	0.027
-r	+t	-	0.063
-r	-t	+	0.081
-r	-t	-	0.729

Sum out R

\rightarrow

P(T, L)+t +l 0.051 +t -l 0.119

0.083

-t +l

Sum out T

+	0.134
-	0.886

P(L)

Evidence

If evidence, start with factors that select that evidence

2

No evidence uses these initial factors:

P(R)			
+r	0.1		
-r	0.9		

P([T].	R_{i}
+r	+t	0.
+r	-t	0.
-r	+t	0.
-r	-t	0.

P(L T)			
+t	+	0.3	
+t	-	0.7	
-t	+	0.1	
		0	

- Computing P(L|+r) , the initial factors become:

P(+r)	P(T +r)	<i>P</i> (.	L T	')
+r 0.1	+r +t 0.8	+t	+	0.3
	+r -t 0.2	+t	-	0.3
		-t	+	0.1
		-t	-	09

We eliminate all vars other than query + evidence

That's it!

General Variable Elimination

• Query:
$$P(Q|E_1=e_1,\ldots E_k=e_k)$$

- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

Example

 $P(B|j,m) \propto P(B,j,m)$

Variable Elimination

What you need to know:

- Should be able to run it on small examples, understand the factor creation / reduction flow
- Better than enumeration: saves time by marginalizing variables as soon as possible rather than at the end
- We will see special cases of VE later
 - On tree-structured graphs, variable elimination runs in polynomial time, like tree-structured CSPs
 - You'll have to implement a tree-structured special case to track invisible ghosts (Project 4)