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Appreciations

♦ My uncle Pat, passed away yesterday after years of Alzheimer’s

♦ Family, gathered for Thanksgiving

♦ Language and evidence of the past

Share some of yours?
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Announcements

Project P1 grades are up on D2L, with extra credit, early bonus, late add-ons,

etc.

Project P3 Reinforcement due Thu Nov 29th at 17:00
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Outline

♦ Bayes Nets, Exact Inference, Variable Elimination

Credit to Dan Klein, Stuart Russell and Andrew Moore for most of today’s

slides
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Bayes’ Net Semantics

� A set of nodes, one per variable X

� A directed, acyclic graph

� A conditional distribution for each node
� A collection of distributions over X, one for 

each combination of parents’ values

� CPT: conditional probability table
� Description of a noisy 䇾causal䇿 process

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities
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Probabilities in BNs

� For all joint distributions, we have (chain rule):

� Bayes’nets implicitly encode joint distributions
� As a product of local conditional distributions
� To see what probability a BN gives to a full assignment, multiply 

all the relevant conditionals together:

� This lets us reconstruct any entry of the full joint
� Not every BN can represent every joint distribution

� The topology enforces certain conditional independencies 3
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All Conditional Independences

� Given a Bayes net structure, can run d-
separation to build a complete list of 
conditional independences that are 
necessarily true of the form

� This list determines the set of probability 
distributions that can be represented 
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Same Assumptions, Different Graphs?

� Can you have two different graphs that 
encode the same assumptions?
� Yes!
� Examples:
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Example: Independence

� For this graph, you can fiddle with θ (the CPTs) all you 
want, but you won’t be able to represent any distribution 
in which the flips are dependent!

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2

All distributions
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Topology Limits Distributions

� Given some graph 
topology G, only certain 
joint distributions can 
be encoded

� The graph structure 
guarantees certain 
(conditional) 
independences

� (There might be more 
independence)

� Adding arcs increases 
the set of distributions, 
but has several costs

� Full conditioning can 
encode any distribution
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Causality?
� When Bayes’ nets reflect the true causal patterns:

� Often simpler (nodes have fewer parents)
� Often easier to think about
� Often easier to elicit from experts

� BNs need not actually be causal
� Sometimes no causal net exists over the domain
� E.g. consider the variables Traffic and Drips
� End up with arrows that reflect correlation, not causation

� What do the arrows really mean?
� Topology may happen to encode causal structure
� Topology only guaranteed to encode conditional independence

� *More about causality: [Causility – Judea Pearl]
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Bayes Nets Representation Summary

� Bayes nets compactly encode joint distributions

� Guaranteed independencies of distributions can 
be deduced from BN graph structure

� D-separation gives precise conditional 
independence guarantees from graph alone

� A Bayes’ net’s joint distribution may have further 
(conditional) independence that is not detectable 
until you inspect its specific distribution
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Inference

� Inference: calculating some 
useful quantity from a joint 
probability distribution

� Examples:
� Posterior probability:

� Most likely explanation:
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Inference by Enumeration

� Given unlimited time, inference in BNs is easy
� Recipe:

� State the marginal probabilities you need
� Figure out ALL the atomic probabilities you need
� Calculate and combine them

� Example:
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Example: Enumeration

� In this simple method, we only need the BN to 
synthesize the joint entries

18



Inference by Enumeration?
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Variable Elimination

� Why is inference by enumeration so slow?
� You join up the whole joint distribution before you 

sum out the hidden variables
� You end up repeating a lot of work!

� Idea: interleave joining and marginalizing!
� Called “Variable Elimination”
� Still NP-hard, but usually much faster than inference 

by enumeration

� We’ll need some new notation to define VE
20



Factor Zoo I

� Joint distribution: P(X,Y)
� Entries P(x,y) for all x, y

� Sums to 1

� Selected joint: P(x,Y)
� A slice of the joint distribution

� Entries P(x,y) for fixed x, all y

� Sums to P(x)
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T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

cold sun 0.2

cold rain 0.3



Factor Zoo II

� Family of conditionals: 

P(X |Y)
� Multiple conditionals
� Entries P(x | y) for all x, y
� Sums to |Y|

� Single conditional: P(Y | x)
� Entries P(y | x) for fixed 

x, all y
� Sums to 1
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T W P

hot sun 0.8

hot rain 0.2

cold sun 0.4

cold rain 0.6

T W P

cold sun 0.4

cold rain 0.6



Factor Zoo III

� Specified family: P(y | X)
� Entries P(y | x) for fixed y,

but for all x
� Sums to … who knows!

� In general, when we write P(Y1 … YN | X1 … XM)
� It is a “factor,” a multi-dimensional array
� Its values are all P(y1 … yN | x1 … xM)
� Any assigned X or Y is a dimension missing (selected) from the array
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T W P

hot rain 0.2

cold rain 0.6



Example: Traffic Domain

� Random Variables
� R: Raining
� T: Traffic
� L: Late for class!

� First query: P(L)

24

T

L

R
+r 0.1

-r 0.9

+r +t 0.8

+r -t 0.2

-r +t 0.1

-r -t 0.9

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9



� Track objects called factors
� Initial factors are local CPTs (one per node)

� Any known values are selected
� E.g. if we know                  , the initial factors are

� VE: Alternately join factors and eliminate variables 25

Variable Elimination Outline

+r 0.1

-r 0.9

+r +t 0.8

+r -t 0.2

-r +t 0.1

-r -t 0.9

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

+t +l 0.3

-t +l 0.1

+r 0.1

-r 0.9

+r +t 0.8

+r -t 0.2

-r +t 0.1

-r -t 0.9



� First basic operation: joining factors

� Combining factors:
� Just like a database join
� Get all factors over the joining variable
� Build a new factor over the union of the variables involved

� Example: Join on R

� Computation for each entry: pointwise products
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Operation 1: Join Factors

+r 0.1

-r 0.9

+r +t 0.8

+r -t 0.2

-r +t 0.1

-r -t 0.9

+r +t 0.08

+r -t 0.02

-r +t 0.09

-r -t 0.81
T

R

R,T



Example: Multiple Joins
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T

R Join R

L

R, T

L

+r 0.1

-r 0.9

+r +t 0.8

+r -t 0.2

-r +t 0.1

-r -t 0.9

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

+r +t 0.08

+r -t 0.02

-r +t 0.09

-r -t 0.81

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9



Example: Multiple Joins
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Join T

R, T, L

R, T

L

+r +t 0.08

+r -t 0.02

-r +t 0.09

-r -t 0.81

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

+r +t +l 0.024

+r +t -l 0.056

+r -t +l 0.002

+r -t -l 0.018

-r +t +l 0.027

-r +t -l 0.063

-r -t +l 0.081

-r -t -l 0.729



Operation 2: Eliminate

� Second basic operation: marginalization
� Take a factor and sum out a variable

� Shrinks a factor to a smaller one
� A projection operation

� Example:
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+r +t 0.08

+r -t 0.02

-r +t 0.09

-r -t 0.81

+t 0.17

-t 0.83



Multiple Elimination
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Sum
out R

Sum
out T

T, L LR, T, L

+r +t +l 0.024

+r +t -l 0.056

+r -t +l 0.002

+r -t -l 0.018

-r +t +l 0.027

-r +t -l 0.063

-r -t +l 0.081

-r -t -l 0.729

+t +l 0.051

+t -l 0.119

-t +l 0.083

-t -l 0.747

+l 0.134

-l 0.886



P(L) : Marginalizing Early!
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Sum out R

T

L

+r +t 0.08

+r -t 0.02

-r +t 0.09

-r -t 0.81

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

+t 0.17

-t 0.83

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

T

R

L

+r 0.1

-r 0.9

+r +t 0.8

+r -t 0.2

-r +t 0.1

-r -t 0.9

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

Join R

R, T

L



Marginalizing Early (aka VE*)

Join T Sum out T
T, L L

* VE is variable elimination

T

L

+t 0.17

-t 0.83

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

+t +l 0.051

+t -l 0.119

-t +l 0.083

-t -l 0.747

+l 0.134

-l 0.886



� If evidence, start with factors that select that evidence
� No evidence uses these initial factors:

� Computing                        , the initial factors become:

� We eliminate all vars other than query + evidence
34

Evidence

+r 0.1

-r 0.9

+r +t 0.8

+r -t 0.2

-r +t 0.1

-r -t 0.9

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

+r 0.1 +r +t 0.8

+r -t 0.2

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9



� Result will be a selected joint of query and evidence
� E.g. for P(L | +r), we’d end up with:

� To get our answer, just normalize this!

� That’s it!
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Evidence II

+l 0.26

-l 0.74

+r +l 0.026

+r -l 0.074

Normalize



General Variable Elimination

� Query:

� Start with initial factors:
� Local CPTs (but instantiated by evidence)

� While there are still hidden variables (not Q or evidence):
� Pick a hidden variable H
� Join all factors mentioning H
� Eliminate (sum out) H

� Join all remaining factors and normalize
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Variable Elimination Bayes Rule
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A B P

+a +b 0.08

+a ¬b 0.09B A P

+b +a 0.8

b ¬a 0.2

¬b +a 0.1

¬b ¬a 0.9

B P

+b 0.1

¬b 0.9 a

B a, B

Start / Select Join on B Normalize

A B P

+a +b 8/17

+a ¬b 9/17



Example

Choose A
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Example

Choose E

Finish with B

Normalize
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Variable Elimination

� What you need to know:
� Should be able to run it on small examples, understand the 

factor creation / reduction flow
� Better than enumeration: saves time by marginalizing 

variables as soon as possible rather than at the end

� We will see special cases of VE later
� On tree-structured graphs, variable elimination runs in 

polynomial time, like tree-structured CSPs
� You’ll have to implement a tree-structured special case to 

track invisible ghosts (Project 4)




