BAYES NETS 4

CH. 14.5: APPROXIMATE INFERENCE

Adapted from slides kindly shared by Stuart Russell
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Appreciations

> More good questions and feedback on Piazza

{ The IETF (Internet Engineering Task Force): an evidence-based standards

body!

Share some of yours?
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Announcements

Project P1 grades are up on D2L, with extra credit, early bonus, late add-ons,
etc.

Project P3 Reinforcement due Thu Nov 29th at 17:00
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Outline

> Bayes Nets: Approximate Inference

Credit to Dan Klein, Stuart Russell and Andrew Moore for most of today's

slides
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Approximate Inference




Approximate Inference

Simulation has a name: sampling G
Sampling is a hot topic in machine learning,
and it's really simple e
Basic idea:

= Draw N samples from a sampling distribution S

= Compute an approximate posterior probability o

= Show this converges to the true probability P

Why sample?
= Learning: get samples from a distribution you don’t know

= Inference: getting a sample is faster than computing the right
answer (e.g. with variable elimination)




Prior Sampling

P(C
+C 0.5
-C 0.5
P(S|C) P(R|C)
+ | 45 101 +c | +r | 0.8
-s [ 0.9 -r |0:2
-c | +s [0.5 -c [ +r [0.2
-s | 0.5 -r 108
P(W|S, R)
Samples:
+s +r +w | 0.99
-w | 0.01 +C, -S, +I, W
r +w | 0.90 -C, +S, -I, +w
-w | 0.10
5 +r +w | 0.90
-w_ | 0.10
-r +w | 0.01
-w_ | 0.99




Prior Sampling

This process generates samples with probability:

Spg(xl e .’En) = H P(xi|Parents(Xi)) = P(.’L‘l R a;n)
i=1
...I.e. the BN’s joint probability

Let the number of samples of an event be Npg(z1...2n)

Then lim P(x1,...,xp) = lim Npg(x1,...,zn)/N
N—o0 N—oo

= Spg(z1,...,2n)
= P(x1...zn)
I.e., the sampling procedure is consistent




Example

» First: Get a bunch of samples from the BN:
+C, =S, +I, +W
+C, +S, +I, +W

-C, +S, +, -W
+C, -S, +, +W
-C, -S, I, +w

= Example: we want to know P(W)
» We have counts <+w:4, -w:1>
= Normalize to get approximate P(W) = <+w:0.8, -w:0.2>
= This will get closer to the true distribution with more samples
= Can estimate anything else, too
= What about P(C| +w)? P(C| +r, +w)? P(C| -r, -w)?
= Fast: can use fewer samples if less time (what's the drawback?)




Rejection Sampling

» Let's say we want P(C) S
= No point keeping all samples around
= Just tally counts of C as we go £
D
» |Let's say we want P(C| +s)
. +C, -S, +I, tW
= Same thing: tally C outcomes, but +C, +5, +T, +W
ignore (reject) samples which don’t -C, +S, +I, -W
have S=+s +C, -S, +r, +W
-C, -S, I, tw

» This is called rejection sampling

= |t is also consistent for conditional
probabilities (i.e., correct in the limit)




Sampling Example

» There are 2 cups.
= The first contains 1 penny and 1 quarter
= The second contains 2 quarters

= Say | pick a cup uniformly at random, then pick a
coin randomly from that cup. It's a quarter (yes!).
What is the probability that the other coin in that
cup is also a quarter?




Likelihood Weighting

Problem with rejection sampling:
= |f evidence is unlikely, you reject a lot of samples

= You don’t exploit your evidence as you sample b -a

= Consider P(B|+a) b -a
-b, -a
+b, +a

Idea: fix evidence variables and sample the rest
-b +a
-b, +a
-b, +a
+b, +a

Problem: sample distribution not consistent!
Solution: weight by probability of evidence given parents




Likelihood Weighting

P(S|C)
+c | +s | 0.1
-s | 0.9
-c | +s | 0.5
-s | 0.5
P(W|S,R)
+s +r +w | 0.99
-w | 0.01
-r +w | 0.90
-w | 0.10
-5 +r +w | 0.90
-W 0.10
-r +w [ 0.01
-w | 0.99

P(C
+C 0.5
-C 0.5
P(R|C)
+c | +r | 0.8
-r |0.2
c | +r |0.2
-r |0.8
Samples:

+C, +S, +rI, +W

w = 1.0x0.1x0.99




Likelihood Weighting

= Sampling distribution if z sampled and e fixed evidence
l

Sws(z,e) = H P(z;|Parents(Z;)) <

=1
= Now, samples have weights .o

w(z,e) = ﬁ P(e;|Parents(E;))
i=1

= Together, weighted sampling distribution is consistent

{ m
Sws(z,¢) - w(z,¢) = | | PlzilParents(z)) [ | P(e:|Parents(e;))

i=1 =1

= P(z,e) 1




Likelihood Weighting

= Likelihood weighting is good

= \We have taken evidence into account as
we generate the sample

= E.g. here, W’s value will get picked
based on the evidence values of S, R
= More of our samples will reflect the state
of the world suggested by the evidence
Likelihood weighting doesn’t solve
all our problems
= Evidence influences the choice of
downstream variables, but not upstream
ones (C isn't more likely to get a value
matching the evidence)
We would like to consider evidence
when we sample every variable
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Markov Chain Monte Carlo*

Idea: instead of sampling from scratch, create samples that are each
like the last one.

Procedure: resample one variable at a time, conditioned on all the
rest, but keep evidence fixed. E.g., for P(B|+c):

(@) @) (HE

Properties: Now samples are not independent (in fact they're nearly
identical), but sample averages are still consistent estimators!

What's the point: both upstream and downstream variables condition
on evidence.
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Decision Networks

* MEU: choose the action which
maximizes the expected utility
given the evidence

Umbrella

= Can directly operationalize this
with decision networks
= Bayes nets with nodes for
utility and actions

= Lets us calculate the expected
utility for each action

Weather

= New node types:
= Chance nodes (just like BNS) v

= Actions (rectangles, cannot Forecast
have parents, act as observed
evidence)

= Utility node (diamond, depends
on action and chance nodes)
[DEMO: Ghostbusters]
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Decision Networks

= Action selection:

= Instantiate all
evidence

= Set action node(s)
each possible way

= Calculate posterior
for all parents of
utility node, given
the evidence

= Calculate expected
utility for each action

» Choose maximizing
action

Umbrella

Weather

\ 4
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Example: Decision Networks

Umbrella = leave

U(leave) Z P(w)U (leave, w)

w
=0.7-1004+0.3-0="70
Umbrella = take

EU(take) Z P(w)U (take, w)

w

Umbrella

/

<>

A W |UAW)
=0.7-2040.3-70 =35 W W) oave - 100
sun 0.7 leave rain 0

Optimal decision = leave rain 0.3 take sun 20
take rain 70

MEU(g) = max EU(a) = 70




Decisions as Outcome Trees

= Almost exactly like expectimax / MDPs
= What's changed?
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Evidence in Decision Networks

Umbrella
W P(W)
sun 0.7
rain 0.3
Weather
F P(F|sun)
good 0.8
bad 0.2
v
F P(F|rain)
good 0.1 Forecast
bad 0.9

= Find P(W|F=bad)
= Select for evidence

w P(W) w P(F=bad|W)
sun 0.7 sun 0.2
rain 0.3 rain 0.9
P(W) P(bad|W)
= First we join P(W) and
P(bad|W)
= Then we normalize
w P(W,F=bad) w P(W | F=bad)
sun 0.14 sun 0.34
rain 0.27 D rain 0.66

P(W, bad) P(W|F = bad)




Example: Decision Networks

ool W | P(W|F=bad)
Umbrella = leave mbrella <un 034
U(leave|bad) = Z P(w|bad)U (leave, w) rain 0.66

w

=0.34-100+0.66-0 = 34

Umbrella = take Weather \

A W | UAW)
U(take|bad) = ZP w|bad)U (take, w) leave | sun 100
leave | rain 0

=0.34-20+0.66 - 70 = 53 v
OTeCas take | sun 20
=bad take | rain 70

Optimal decision = take

MEU(F = bad) = max EU(a|bad) = 53 2




Decisions as Outcome Trees
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Value of Information

Idea: compute value of acquiring evidence
= Can be done directly from decision network

Example: buying oil drilling rights
= Two blocks A and B, exactly one has oil, worth k
= You can drill in one location
= Prior probabilities 0.5 each, & mutually exclusive
= Drilling in either A or B has EU = k/2, MEU = k/2

Question: what's the value of information of O?
Value of knowing which of A or B has oil
Value is expected gain in MEU from new info

If we know OilLoc, MEU is k (either way)
Gain in MEU from knowing OilLoc?
VPI(OilLoc) = k/2

Fair price of information: k/2

DrillLoc

Oof P

1/2

b| 1/2

Survey may say “oil in a” or “oil in b,” prob 0.5 each

D|O

ala k
alb 0
b|a 0
b|b k
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Value of Information

Assume we have evidence E=e. Value if we act now: {e}
a
MEU(e) = maaxz P(sle) U(s,a)
y P(s|e)
Assume we see that E’ = e’. Value if we act then: U

A /
MEU(e,e') = mc?xg P(sle,e") U(s,a) fe e}
a
BUT E’ is a random variable whose value is
unknown, so we don’'t know what e’ will be P(s|e,e)
U
Expected value if E’ is revealed and then we act:
MEU(e, B') = 3" P(€/|e)MEU(e, ') e}
7 P’ e)

€
Value of information: how much MEU goes up {e, e}
by revealing E’ first then acting, over acting now:

VPI(E'|e) = MEU(e, E") — MEU(e)




VPI Example: Weather

MEU with no evidence
MEU(g) = max EU(a) =70
MEU if forecast is bad
MEU(F = bad) = max EU(a|bad) = 53
MEU if forecast is good

MEU(F = good) = max EU(algood) = 95
Forecast distribution

F | PE

bad 0.41

VPI(E|) = (Z P(|le)ME

6/

Umbrella

A

Weather

leave

sun

y

leave
Forecast take

rain

sun

take

rain

wor o] £ 0.59 - (95) 4+ 0.41 - (53) — 70

778 —-70="7.8

U(e, )

) — MEU(e)
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VPI Properties

= Nonnegative

VE' e: VPI(E'|e) >0
= Nonadditive — consider, e.g., obtaining E; twice

VPI(E;, Exle) # VPI(Ej|e) + VPI(Eyle)
= Order-independent

VPI(E;, Ele) = VPI(E;le) + VPI(Eyle, E;)
= VPI(Ej|e) + VPI(E;le, E})
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Quick VPI Questions

= The soup of the day is either clam chowder or split pea,
but you wouldn’t order either one. What's the value of
knowing which it is?

» There are two kinds of plastic forks at a picnic. One kind
is slightly sturdier. What's the value of knowing which?

= You're playing the lottery. The prize will be $0 or $100.
You can play any number between 1 and 100 (chance of
winning is 1%). What is the value of knowing the
winning number?




