
MDPs: Bellman Equations, Value Iteration

Sutton & Barto Ch 4 (Cf. AIMA Ch 17, Section 2-3)

Adapted from slides kindly shared by Stuart Russell

Sutton & Barto Ch 4 (Cf. AIMA Ch 17, Section 2-3) 1



Appreciations

♦ My older brother Rusty and his late wife Debbie

♦ Online community

Share some of yours?

Sutton & Barto Ch 4 (Cf. AIMA Ch 17, Section 2-3) 2



Announcements

Reminder: Project P2 Multi-Agent Pac-Man is out, due Thu Nov 1

Guest lecture next Monday

Sutton & Barto Ch 4 (Cf. AIMA Ch 17, Section 2-3) 3



Outline

♦ Dynamic programming and Bellman equations

♦ Value iteration

♦ Policy iteration

Credit to Dan Klein, Stuart Russell and Andrew Moore for most of today’s
slides

Sutton & Barto Ch 4 (Cf. AIMA Ch 17, Section 2-3) 4



Books, Notation

♦ AIMA: Artifical Intelligence, a Modern Approach, by Russell & Norvig

Less detail on value iteration, reinforcement learning, etc.

Nice graphs

♦ Reinforcement Learning, An Introduction, by Sutton & Barto

More coverage, useful for this part of the course: chapters 3, 4, and 6

Uses same nomenclature we’ll use in lecture for optimal values / utilities

“V*(s)” and “Q*(s)” vs“U(s)”

Cool mutual recursion

Sutton & Barto Ch 4 (Cf. AIMA Ch 17, Section 2-3) 5

http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html


Grid World
� The agent lives in a grid

� Walls block the agent’s path

� The agent’s actions do not always 
go as planned:
� 80% of the time, the action North 

takes the agent North 
(if there is no wall there)

� 10% of the time, North takes the 
agent West; 10% East

� If there is a wall in the direction the 
agent would have been taken, the 
agent stays put

� Small “living” reward each step

� Big rewards come at the end

� Goal: maximize sum of rewards*



Recap: MDPs

� Markov decision processes:
� States S
� Actions A
� Transitions P(s’|s,a) (or T(s,a,s’))
� Rewards R(s,a,s’) (and discount γ)
� Start state s0

� Quantities:
� Policy = map of states to actions
� Episode = one run of an MDP
� Utility = sum of discounted rewards
� Values = expected future utility from a state
� Q-Values = expected future utility from a q-state

a

s

s, a

s,a,s’
s’

4

[DEMO – MDP Quantities]



Optimal Utilities

� The utility of a state s:
V*(s) = expected utility starting 

in s and acting optimally

� The utility of a q-state (s,a):
Q*(s,a) = expected utility 

starting out having taken 
action a from state s and 
(thereafter) acting optimally

� The optimal policy:
π*(s) = optimal action from 

state s

5

a

s

s’

s, a

(s,a,s’) is a 
transition

s,a,s’

s is a 
state

(s, a) is a 
q-state



Bellman Equations

� Definition of utility leads to a simple 
one-step lookahead relationship 
amongst optimal utility values:

Total optimal rewards = maximize over 
choice of (first action plus optimal future)

� Formally:

a

s

s, a

s,a,s’
s’

6



Value Estimates

� Calculate estimates Vk
*(s)

� Not the optimal value of s!
� The optimal value 

considering only next k 
time steps (k rewards)

� What you’d get with depth-
k expectimax*

� As k → ∞, it approaches 
the optimal value*

� Almost solution: recursion 
(i.e. expectimax)

� Correct solution: dynamic 
programming

7
[DEMO -- Vk]



Value Iteration

� Idea:
� Start with V0

*(s) = 0 for all s, which we know is right (why?)
� Given Vi

*, calculate the values for all states for depth i+1:

� Throw out old vector Vi
*

� Repeat until convergence
� This is called a value update or Bellman update

� Theorem: will converge to unique optimal values
� Basic idea: approximations get refined towards optimal values
� Policy may converge long before values do

8



Example: Bellman Updates

9

max happens for 
a=right, other 
actions not shown

Example: γ=0.9, living 
reward=0, noise=0.2



Example: Value Iteration

� Information propagates outward from terminal 
states and eventually all states have correct 
value estimates

V2 V3

10



Convergence*

� Define the max-norm:

� Theorem: For any two approximations U and V

� I.e. any distinct approximations must get closer to each other, so, 
in particular, any approximation must get closer to the true U and 
value iteration converges to a unique, stable, optimal solution

� Theorem:

� I.e. once the change in our approximation is small, it must also 
be close to correct

11



Practice: Computing Actions

� Which action should we chose from state s:
� Given optimal values V?

� Given optimal q-values Q?

� Lesson: actions are easier to select from Q’s!

12
[DEMO – MDP action selection]



Utilities for a Fixed Policy

� Another basic operation: compute 
the utility of a state s under a fixed 
(generally non-optimal) policy

� Define the utility of a state s, under a 
fixed policy π:
Vπ(s) = expected total discounted 

rewards (return) starting in s and 
following π

� Recursive relation (one-step look-
ahead / Bellman equation):

π(s)

s

s, π(s)

s, π(s),s’

s’

13
[DEMO – Right-Only Policy]



Policy Evaluation

� How do we calculate the V’s for a fixed policy?

� Idea one: turn recursive equations into updates

� Idea two: it’s just a linear system, solve with 
Matlab (or whatever)

14



Policy Iteration

� Alternative approach for optimal values:
� Step 1: Policy evaluation: calculate utilities for some 

fixed policy (not optimal utilities!) until convergence
� Step 2: Policy improvement: update policy using one-

step look-ahead with resulting converged (but not 
optimal!) utilities as future values

� Repeat steps until policy converges

� This is policy iteration
� It’s still optimal!
� Can converge faster under some conditions

15



Policy Iteration

� Policy evaluation: with fixed current policy π, find values 
with simplified Bellman updates:
� Iterate until values converge

� Policy improvement: with fixed utilities, find the best 
action according to one-step look-ahead

16



Comparison
� Both VI and PI compute the same thing (optimal values for all 

states)

� In value iteration:

� Every pass (or “backup”) updates both utilities (explicitly, based 
on current utilities) and policy (implicitly, based on current 
utilities)

� Tracking the policy isn’t necessary; we take the max

� In policy iteration:

� Several passes to update utilities with fixed policy

� After policy is evaluated, a new policy is chosen

� Both are dynamic programs for solving MDPs

17



Asynchronous Value Iteration*

� In value iteration, we update every state in each iteration

� Actually, any sequences of Bellman updates will 
converge if every state is visited infinitely often

� In fact, we can update the policy as seldom or often as 
we like, and we will still converge

� Idea: Update states whose value we expect to change:
If                         is large then update predecessors of s




