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Appreciations

♦ Graders!

Share some of yours?
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Announcements

Project P3 Reinforcement learning out soon
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Outline

♦ P2 Mini Contest Winners!

♦ Reinforcement Learning Recap

♦ Evaluation Functions

♦ Linear Feature Functions

♦ Function Approximation

Credit to Dan Klein, Stuart Russell and Andrew Moore for most of today’s

slides
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P2 Mini Contest Winners!

3rd: Leonard Komow - Wins: 4, Timeouts: 0, Crashes: 0, Average: 1868.33

2nd: Eliot Glairon - Wins: 2, Timeouts: 0, Crashes: 0, Average: 2281.83

1st: Dylan Klein and Justin Baacke Wins: 6, Timeouts: 0, Crashes: 0,

Average: 3419.50
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Reinforcement Learning

� Reinforcement learning:
� Still assume an MDP:

� A set of states s ∈ S

� A set of actions (per state) A

� A model T(s,a,s’)

� A reward function R(s,a,s’)

� Still looking for a policy π(s)

� New twist: don’t know T or R
� I.e. don’t know which states are good or what the actions do

� Must actually try actions and states out to learn

[DEMO]
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The Story So Far: MDPs and RL

� If we know the MDP
� Compute V*, Q*, π* exactly

� Evaluate a fixed policy π

� If we don’t know the MDP
� We can estimate the MDP then solve

� We can estimate V for a fixed policy π
� We can estimate Q*(s,a) for the 

optimal policy while executing an 
exploration policy
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� Model-based DPs
� Value and policy 

Iteration

� Policy evaluation

� Model-based RL

� Model-free RL:
� Value learning

� Q-learning

Things we know how to do: Techniques:



Model-Free Learning

� Model-free (temporal difference) learning
� Experience world through episodes

� Update estimates each transition
� Over time, updates will mimic Bellman updates
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Q-Value Iteration (model-based, requires known MDP)

Q-Learning (model-free, requires only experienced transitions)
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Q-Learning
� We’d like to do Q-value updates to each Q-state:

� But can’t compute this update without knowing T, R

� Instead, compute average as we go
� Receive a sample transition (s,a,r,s’)

� This sample suggests

� But we want to average over results from (s,a)  (Why?)

� So keep a running average

[DEMO – Grid Q’s]
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Q-Learning Properties

� Will converge to optimal policy
� If you explore enough (i.e. visit each q-state many times)

� If you make the learning rate small enough

� Basically doesn’t matter how you select actions (!)

� Off-policy learning: learns optimal q-values, not the 
values of the policy you are following

S E S E

[DEMO – Grid Q’s]
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Q-Learning

� Q-learning produces tables of q-values:

[DEMO – Crawler Q’s]

7



Exploration / Exploitation

� Several schemes for forcing exploration
� Simplest: random actions (ε greedy)

� Every time step, flip a coin
� With probability ε, act randomly
� With probability 1-ε, act according to current policy

� Regret: expected gap between rewards during 
learning and rewards from optimal action
� Q-learning with random actions will converge to optimal values, 

but possibly very slowly, and will get low rewards on the way

� Results will be optimal but regret will be large

� How to make regret small?
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Exploration Functions

� When to explore
� Random actions: explore a fixed amount

� Better ideas: explore areas whose badness is not (yet) 
established, explore less over time

� One way: exploration function
� Takes a value estimate and a count, and returns an optimistic 

utility, e.g.                                    (exact form not important)
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Q-Learning

� In realistic situations, we cannot possibly learn 
about every single state!
� Too many states to visit them all in training
� Too many states to hold the q-tables in memory

� Instead, we want to generalize:
� Learn about some small number of training states 

from experience
� Generalize that experience to new, similar states
� This is a fundamental idea in machine learning, and 

we’ll see it over and over again
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Example: Pacman

� Let’s say we discover 
through experience 
that this state is bad:

� In naïve q learning, we 
know nothing about 
this state or its q 
states:

� Or even this one!

12

[DEMO – RL Pacman]



Feature-Based Representations

� Solution: describe a state using 
a vector of features (properties)
� Features are functions from states 

to real numbers (often 0/1) that 
capture important properties of the 
state

� Example features:
� Distance to closest ghost
� Distance to closest dot
� Number of ghosts
� 1 / (dist to dot)2

� Is Pacman in a tunnel? (0/1)
� …… etc.
� Is it the exact state on this slide?

� Can also describe a q-state (s, a) 
with features (e.g. action moves 
closer to food)
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Linear Feature Functions

� Using a feature representation, we can write a 
q function (or value function) for any state 
using a few weights:

� Advantage: our experience is summed up in a 
few powerful numbers

� Disadvantage: states may share features but 
actually be very different in value!
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Function Approximation

� Q-learning with linear q-functions:

� Intuitive interpretation:
� Adjust weights of active features
� E.g. if something unexpectedly bad happens, disprefer all states 

with that state’s features

� Formal justification: online least squares
15

Exact Q’s

Approximate Q’s



Example: Q-Pacman
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[DEMO – RL Pacman]
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Ordinary Least Squares (OLS)
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Minimizing Error

Approximate q update explained:
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Imagine we had only one point x with features f(x):

“target” “prediction”
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Policy Search
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Policy Search

� Problem: often the feature-based policies that work well 
aren’t the ones that approximate V / Q best
� E.g. your value functions from project 2 were probably horrible 

estimates of future rewards, but they still produced good 
decisions

� We’ll see this distinction between modeling and prediction again 
later in the course

� Solution: learn the policy that maximizes rewards rather 
than the value that predicts rewards

� This is the idea behind policy search, such as what 
controlled the upside-down helicopter
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Policy Search

� Simplest policy search:
� Start with an initial linear value function or q-function
� Nudge each feature weight up and down and see if 

your policy is better than before

� Problems:
� How do we tell the policy got better?
� Need to run many sample episodes!
� If there are a lot of features, this can be impractical
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Policy Search*

� Advanced policy search:
� Write a stochastic (soft) policy:

� Turns out you can efficiently approximate the 
derivative of the returns with respect to the 
parameters w (optional material)

� Take uphill steps, recalculate derivatives, etc.
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Take a Deep Breath…

� We’re done with search and planning!

� Next, we’ll look at how to reason with probabilities
� Diagnosis
� Tracking objects
� Speech recognition
� Robot mapping
� … lots more!

� Last part of course: machine learning
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