
Reinforcement Learning 2

Ch. 17.1-3, S&B Ch. 6.1,2,5

Adapted from slides kindly shared by Stuart Russell

Ch. 17.1-3, S&B Ch. 6.1,2,5 1

Appreciations

♦ Graders!

Share some of yours?

Ch. 17.1-3, S&B Ch. 6.1,2,5 2

Announcements

Project P3 Reinforcement learning out soon

Ch. 17.1-3, S&B Ch. 6.1,2,5 3

Outline

♦ P2 Mini Contest Winners!

♦ Reinforcement Learning Recap

♦ Evaluation Functions

♦ Linear Feature Functions

♦ Function Approximation

Credit to Dan Klein, Stuart Russell and Andrew Moore for most of today’s

slides

Ch. 17.1-3, S&B Ch. 6.1,2,5 4

P2 Mini Contest Winners!

3rd: Leonard Komow - Wins: 4, Timeouts: 0, Crashes: 0, Average: 1868.33

2nd: Eliot Glairon - Wins: 2, Timeouts: 0, Crashes: 0, Average: 2281.83

1st: Dylan Klein and Justin Baacke Wins: 6, Timeouts: 0, Crashes: 0,

Average: 3419.50

Ch. 17.1-3, S&B Ch. 6.1,2,5 5

Reinforcement Learning

� Reinforcement learning:
� Still assume an MDP:

� A set of states s ∈ S

� A set of actions (per state) A

� A model T(s,a,s’)

� A reward function R(s,a,s’)

� Still looking for a policy π(s)

� New twist: don’t know T or R
� I.e. don’t know which states are good or what the actions do

� Must actually try actions and states out to learn

[DEMO]

2

The Story So Far: MDPs and RL

� If we know the MDP
� Compute V*, Q*, π* exactly

� Evaluate a fixed policy π

� If we don’t know the MDP
� We can estimate the MDP then solve

� We can estimate V for a fixed policy π
� We can estimate Q*(s,a) for the

optimal policy while executing an
exploration policy

3

� Model-based DPs
� Value and policy

Iteration

� Policy evaluation

� Model-based RL

� Model-free RL:
� Value learning

� Q-learning

Things we know how to do: Techniques:

Model-Free Learning

� Model-free (temporal difference) learning
� Experience world through episodes

� Update estimates each transition
� Over time, updates will mimic Bellman updates

4

a

s

s, a

s’

Q-Value Iteration (model-based, requires known MDP)

Q-Learning (model-free, requires only experienced transitions)

r

Q-Learning
� We’d like to do Q-value updates to each Q-state:

� But can’t compute this update without knowing T, R

� Instead, compute average as we go
� Receive a sample transition (s,a,r,s’)

� This sample suggests

� But we want to average over results from (s,a) (Why?)

� So keep a running average

[DEMO – Grid Q’s]

5

Q-Learning Properties

� Will converge to optimal policy
� If you explore enough (i.e. visit each q-state many times)

� If you make the learning rate small enough

� Basically doesn’t matter how you select actions (!)

� Off-policy learning: learns optimal q-values, not the
values of the policy you are following

S E S E

[DEMO – Grid Q’s]

6

Q-Learning

� Q-learning produces tables of q-values:

[DEMO – Crawler Q’s]

7

Exploration / Exploitation

� Several schemes for forcing exploration
� Simplest: random actions (ε greedy)

� Every time step, flip a coin
� With probability ε, act randomly
� With probability 1-ε, act according to current policy

� Regret: expected gap between rewards during
learning and rewards from optimal action
� Q-learning with random actions will converge to optimal values,

but possibly very slowly, and will get low rewards on the way

� Results will be optimal but regret will be large

� How to make regret small?

8

Exploration Functions

� When to explore
� Random actions: explore a fixed amount

� Better ideas: explore areas whose badness is not (yet)
established, explore less over time

� One way: exploration function
� Takes a value estimate and a count, and returns an optimistic

utility, e.g. (exact form not important)

9

[DEMO – Crawler]

Q-Learning

� In realistic situations, we cannot possibly learn
about every single state!
� Too many states to visit them all in training
� Too many states to hold the q-tables in memory

� Instead, we want to generalize:
� Learn about some small number of training states

from experience
� Generalize that experience to new, similar states
� This is a fundamental idea in machine learning, and

we’ll see it over and over again

11

Example: Pacman

� Let’s say we discover
through experience
that this state is bad:

� In naïve q learning, we
know nothing about
this state or its q
states:

� Or even this one!

12

[DEMO – RL Pacman]

Feature-Based Representations

� Solution: describe a state using
a vector of features (properties)
� Features are functions from states

to real numbers (often 0/1) that
capture important properties of the
state

� Example features:
� Distance to closest ghost
� Distance to closest dot
� Number of ghosts
� 1 / (dist to dot)2

� Is Pacman in a tunnel? (0/1)
� …… etc.
� Is it the exact state on this slide?

� Can also describe a q-state (s, a)
with features (e.g. action moves
closer to food)

13

Linear Feature Functions

� Using a feature representation, we can write a
q function (or value function) for any state
using a few weights:

� Advantage: our experience is summed up in a
few powerful numbers

� Disadvantage: states may share features but
actually be very different in value!

14

Function Approximation

� Q-learning with linear q-functions:

� Intuitive interpretation:
� Adjust weights of active features
� E.g. if something unexpectedly bad happens, disprefer all states

with that state’s features

� Formal justification: online least squares
15

Exact Q’s

Approximate Q’s

Example: Q-Pacman

16

[DEMO – RL Pacman]

0 20
0

20

40

0
10

20
30

40

0

10

20

30

20

22

24

26

Linear Regression

Prediction Prediction

17

Ordinary Least Squares (OLS)

0 20
0

Error or “residual”

Prediction

Observation

18

Minimizing Error

Approximate q update explained:

19

Imagine we had only one point x with features f(x):

“target” “prediction”

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting

Policy Search

21

[DEMO]

Policy Search

� Problem: often the feature-based policies that work well
aren’t the ones that approximate V / Q best
� E.g. your value functions from project 2 were probably horrible

estimates of future rewards, but they still produced good
decisions

� We’ll see this distinction between modeling and prediction again
later in the course

� Solution: learn the policy that maximizes rewards rather
than the value that predicts rewards

� This is the idea behind policy search, such as what
controlled the upside-down helicopter

22

Policy Search

� Simplest policy search:
� Start with an initial linear value function or q-function
� Nudge each feature weight up and down and see if

your policy is better than before

� Problems:
� How do we tell the policy got better?
� Need to run many sample episodes!
� If there are a lot of features, this can be impractical

23

Policy Search*

� Advanced policy search:
� Write a stochastic (soft) policy:

� Turns out you can efficiently approximate the
derivative of the returns with respect to the
parameters w (optional material)

� Take uphill steps, recalculate derivatives, etc.

24

Take a Deep Breath…

� We’re done with search and planning!

� Next, we’ll look at how to reason with probabilities
� Diagnosis
� Tracking objects
� Speech recognition
� Robot mapping
� … lots more!

� Last part of course: machine learning

25

