BAYES’ RULE

CH. 13.1-5 (2E: CH. 13.1-6)

Adapted from slides kindly shared by Stuart Russell
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Appreciations

> Significant Election Margins!

Share some of yours?
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Announcements

Project P3 Reinforcement out soon with some extra debugging, due Dec 6
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Outline

Probability

Random Variables

Joint and Marginal Distributions
Conditional Distribution

Product Rule, Chain Rule, Bayes Rule

Inference

R ORIV SR G O

Independence

Credit to Dan Klein, Stuart Russell and Andrew Moore for most of today's
slides
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Today

= Probability

= Random Variables
Joint and Marginal Distributions
Conditional Distribution
Product Rule, Chain Rule, Bayes’ Rule
Inference
Independence

» You'll need all this stuff A LOT for the next few
weeks, so make sure you go over it now!




Inference in Ghostbusters

= Aghostis in the grid
somewhere
= Sensor readings tell
how close a square
is to the ghost
= On the ghost: red
= 1 or 2 away: orange
= 3 or 4 away: yellow
= 5+ away: green

= Sensors are noisy, but we know P(Color | Distance)

P(red | 3) P(orange | 3) | P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3

[Demo]




Uncertainty

= General situation:

* Observed variables
(evidence): Agent knows on [f oat f onn
certain things about the state of
the world (e.g., sensor readings
or symptoms)

= Unobserved variables: Agent =
needs to reason about other

aspects (e.g. where an object is ot
or what disease is present)
= Model: Agent knows something 017

about how the known variables
relate to the unknown variables .

= Probabilistic reasoning gives
us a framework for managing
our beliefs and knowledge




Random Variables

= Arandom variable is some aspect of the world about
which we (may) have uncertainty
» R=lIsitraining?
= D =How long will it take to drive to work?
» L=Wheream I?

= We denote random variables with capital letters

= Like variables in a CSP, random variables have domains
* Rin {true, false} (sometimes write as {+r, =r})
* Din [0, o)
= L in possible locations, maybe {(0,0), (0,1), ...}




Probability Distributions

Unobserved random variables have distributions

P(T) P(W)
T P w P
warm | 0.5 sun 0.6
cold | 0.5 rain 0.1
fog 0.3
meteor 0.0

A distribution is a TABLE of probabilities of values
A probability (lower case value) is a single number

P(W = rain) = 0.1 P(rain) = 0.1

Must have: Vz P(z) >0 > P(z)=1
x




Joint Distributions

= Ajoint distribution over a set of random variables: X, X5, .

specifies a real number for each assignment (or outcome):

P(X1=z1,Xo=x9,...Xn =xp)
P(x1,22,...2n)
= Size of distribution if n variables with domain sizes d?

= Must obey:
P(z1,20,...2n) >0

Z P(z1,z0,...70) =1

(Ilva""xTL)

.. Xn
P(T, W)

T W P
hot sun | 0.4
hot rain | 0.1

cold | sun | 0.2
cold | rain | 0.3

= For all but the smallest distributions, impractical to write out




Probabilistic Models

= A probabilistic model is a joint distribution Distribution over T.W

over a set of random variables = W P

= Probabilistic models: hot sun 0.4
= (Random) variables with domains hot rain 0.1
= Assignments are called outcomes
= Joint distributions: say whether cold | sun 0.2

as&gnments (outcomes) are likely cold rain 0.3
= Normalized: sumto 1.0
= |deally: only certain variables directly C .
interact onstraint over TW
. . . T W P

= Constraint satisfaction probs:

* Variables with domains hot sun T

= Constraints: state whether assignments hot rain =
are possible

= I|deally: only certain variables directly cold sun F
Interact cold rain T




Events

= Aneventis a set E of outcomes T W P
hot sun 0.4
P(E)y= >  P(z1...zn) _
(21...0n)EE hot rain 0.1
cold sun 0.2
= From a joint distribution, we can calculate :
the probability of any event cold | rain 0.3

= Probability that it's hot AND sunny?
= Probability that it's hot?
= Probability that it's hot OR sunny?

= Typically, the events we care about are
partial assignments, like P(T=hot)




Marginal Distributions

Marginal distributions are sub-tables which eliminate variables
Marginalization (summing out): Combine collapsed rows by adding

P(T)
P(T, W) LI
= W = > hot 0.5
cold 0.5
hot | sun 041 P(t) =) P(t,s)
hot | rain 0.1 s P(W)
cold | sun 0.2 > W P
cold | rain 03[ P(s) =>_ P(t,s) sun 0.6
t rain 0.4

P(X1==21) =) P(X1=um1,X0=u12) 10
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Conditional Probabilities

= A simple relation between joint and conditional probabilities
= |nfact, this is taken as the definition of a conditional probability

P(alb) = P(a,b)
P(b)
P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(a,b)

P(a) P(b)

P(W =r|T =¢) =777
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Conditional Distributions

= Conditional distributions are probability distributions over
some variables given fixed values of others

P(W|T)

Conditional Distributions Joint Distribution
P(WIT = hot) P(T,W)
w P T w P
sun 0.8 hot sun 0.4
rain 0.2 hot rain 0.1
P(W|T = cold) cold | sun 0.2
cold rain 0.3
W P
sun 0.4

rain 0.6

12




Normalization Trick

= Atrick to get a whole conditional distribution at once:
= Select the joint probabilities matching the evidence
= Normalize the selection (make it sum to one)

P(T,W)
T W P P(T, 7’) P(T‘T)
hot sun | 0.4 T R P T P
hot rain | 0.1 > hot | rain | 0.1 hot 0.25
Select - Normalize
cold sun | 0.2 cold | rain | 0.3 cold 0.75
cold rain | 0.3

= Why does this work? Sum of selection is P(evidence)! (P(r), here)
P(xy,2z2) _  P(z1,72)
P(x2) oy P(z1,72) 13

P(zi|zo) =




Probabilistic Inference

= Probabilistic inference: compute a desired probability from
other known probabilities (e.g. conditional from joint)

= We generally compute conditional probabilities
= P(on time | no reported accidents) = 0.90
= These represent the agent’s beliefs given the evidence

* Probabilities change with new evidence:
= P(ontime | no accidents, 5 a.m.) = 0.95
= P(ontime | no accidents, 5 a.m., raining) = 0.80
= Observing new evidence causes beliefs to be updated
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Inference by Enumeration

= P(sun)?
S T W P
summer hot sun 0.30
summer hot rain 0.05
= P(sun | winter)? summer | cold | sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
. winter cold sun 0.15
= P(sun | winter, hot)? winter | cold | rain | 0.20

15




Inference by Enumeration

General case:

= Evidence variables: E1...Ep=e1...¢; X1, Xo,...Xn
= Query* variable: Q .
= Hiddenvariables:  H;...H, All variables

Wewant: P(Qle1...ex)

First, select the entries consistent with the evidence
Second, sum out H to get joint of Query and evidence:

P(Q,h1...hr,e1...€
P(Q.eq...ep) = h];hr (Q,h1...hryer...ep)

X1, Xo,... Xn
Finally, normalize the remaining entries to conditionalize
Obvious problems:
* Works fine with

= Worst-case time complexity O(d") multiple query
= Space complexity O(d") to store the joint distribution variables, too




The Product Rule

= Sometimes have conditional distributions but want the joint

Paly) = D&Y ¢y Pa,y) = P(aly) P(y)

P(y)
= Example:
P(D|W) P(D,W)

P(W) D w P D W P
R = wet sun | 0.1 wet sun | 0.08
<un 1 os dry su-n 0.9 <:> dry | sun | 0.72
ain 1 02 wet ra?n 0.7 wet rain | 0.14
dry rain | 0.3 dry rain | 0.06




The Chain Rule

= More generally, can always write any joint distribution as
an incremental product of conditional distributions

P(x1,x0,23) = P(x1)P(x2|r1)P(x3|z1,22)

P(z1,22,...7pn) = HP(a:i|m1 Ce Ti—1)
7

= Why is this always true?

19




Bayes’ Rule

= Two ways to factor a joint distribution over two variables:

P(z,y) = P(zly)P(y) = P(y|z)P(x) That's my rule!
= Dividing, we get: "

Plaly) = S50

= Why is this at all helpful?
» Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
» Foundation of many systems we’ll see later (e.g. ASR, MT)

P(x)

= In the running for most important Al equation!

20




Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P(Effect
P(Cause|Effect) = (Effect|Cause) P(Cause)

P(Effect)
= Example:
* mis meningitis, s is stiff neck P(s|m) =0.8
— Example
P(m) = 0.0001 givens
P(s) =0.1
P P 0.8 x 0.0001
P(ml|s) = (sfm)P(m) _ 0.8 x = 0.0008

P(s) 0.1

= Note: posterior probability of meningitis still very small
= Note: you should still get stiff necks checked out! Why? 21




Ghostbusters, Revisited

= Let's say we have two distributions:
= Prior distribution over ghost location: P(G)
= Let's say this is uniform
= Sensor reading model: P(R | G)
= Given: we know what our sensors do
= R =reading color measured at (1,1)
= E.g. P(R =vyellow | G=(1,1)) = 0.1

= We can calculate the posterior
distribution P(G|r) over ghost locations
given a reading using Bayes’ rule:

P(g|r) o< P(r|g)P(g)




Independence

Two variables are independent in a joint distribution if:

P(X,Y) = P(X)P(Y)
X1Y
Va,y P(x,y) = P(z)P(y)

= Says the joint distribution factors into a product of two simple ones
= Usually variables aren’t independent!

Can use independence as a modeling assumption
= Independence can be a simplifying assumption
= Empirical joint distributions: at best “close” to independent
= What could we assume for {Weather, Traffic, Cavity}?

Independence is like something from CSPs: what?

23




Example: Independence?

Pi(T,W)

T w P
hot sun | 0.4
hot rain | 0.1

cold sun | 0.2
cold rain | 0.3

Py (T, W)

T w P
hot sun | 0.3
hot rain | 0.2
cold sun | 0.3
cold rain | 0.2

P(T)
T P
hot 0.5
cold | 0.5
P(W)
w P
sun 0.6

rain 0.4

24




Example: Independence

= N fair, independent coin flips:

S~

P(X1) P(X5) P(Xp)

H |05 H |05 H |05

T 0.5 T 0.5 T 0.5
S

2TL

——

P(X1,Xo,...Xp)
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