Reinforcement Learning 1

Adapted from slides kindly shared by Stuart Russell

Appreciations

\diamondsuit Piazza

Share some of yours?

Reinforcement Learning

Basic idea:

[DEMOS]

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards

Reinforcement Learning

Reinforcement learning:

- Still assume an MDP:
 - A set of states s ∈ S
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$

[DEMO]

- New twist: don't know T or R
 - I.e. don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Passive RL

Simplified task

- You are given a policy π(s)
- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- Goal: learn the state values
- ... what policy evaluation did

In this case:

- Learner "along for the ride"
- No choice about what actions to take
- Just execute the policy and learn from experience
- We'll get to the active case soon
- This is NOT offline planning! You actually take actions in the world and see what happens...

[DEMO – Optimal Policy]

Example: Direct Evaluation

Episodes:

(1,1) up -1	(1,1) up -1
(1,2) up -1	(1,2) up -1
(1,2) up -1	(1,3) right -1
(1,3) right -1	(2,3) right -1
(2,3) right -1	(3,3) right -1
(3,3) right -1	(3,2) up -1
(3,2) up -1	(4,2) exit -100
(3,3) right -1	(done)
(4,3) exit +100	
(done)	

Recap: Model-Based Policy Evaluation

- Simplified Bellman updates to calculate V for a fixed policy:
 - New V is expected one-step-lookahead using current V
 - Unfortunately, need T and R

 $V_0^{\pi}(s) = 0$

 $V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$

Model-Based Learning

- Idea:
 - Learn the model empirically through experience
 - Solve for values as if the learned model were correct
- Simple empirical model learning
 - Count outcomes for each s,a
 - Normalize to give estimate of T(s,a,s')
 - Discover R(s,a,s') when we experience (s,a,s')
- Solving the MDP with the learned model
 - Iterative policy evaluation, for example

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

s. π(s)

Example: Model-Based Learning

Episodes:

(1,1) up -1	(1,1) up -1
(1,2) up -1	(1,2) up -1
(1,2) up -1	(1,3) right -1
(1,3) right -1	(2,3) right -1
(2,3) right -1	(3,3) right -1
(3,3) right -1	(3,2) up -1
(3,2) up -1	(4,2) exit -100
(3,3) right -1	(done)
(4,3) exit +100	
(done)	

Example: Expected Age

Goal: Compute expected age of cs188 students

Model-Free Learning

Want to compute an expectation weighted by P(x):

$$E[f(x)] = \sum_{x} P(x)f(x)$$

Model-based: estimate P(x) from samples, compute expectation

$$x_i \sim P(x)$$

 $\hat{P}(x) = \operatorname{num}(x)/N$

$$E[f(x)] \approx \sum_{x} \hat{P}(x) f(x)$$

Model-free: estimate expectation directly from samples

$$x_i \sim P(x)$$
 $E[f(x)] \approx \frac{1}{N} \sum_i f(x_i)$

 Why does this work? Because samples appear with the right frequencies!

Sample-Based Policy Evaluation?

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

- Who needs T and R? Approximate the expectation with samples of s' (drawn from T!)
 - $sample_{1} = R(s, \pi(s), s'_{1}) + \gamma V_{i}^{\pi}(s'_{1})$ $sample_{2} = R(s, \pi(s), s'_{2}) + \gamma V_{i}^{\pi}(s'_{2})$...

 $sample_k = R(s, \pi(s), s'_k) + \gamma V_i^{\pi}(s'_k)$

$$V_{i+1}^{\pi}(s) \leftarrow \frac{1}{k} \sum_{i} sample_{i}$$

Almost! But we can't rewind time to get sample after sample from state s.

Temporal-Difference Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience (s,a,s',r)
 - · Likely s' will contribute updates more often
- Temporal difference learning
 - Policy still fixed!
 - Move values toward value of whatever successor occurs: running average!

Sample of V(s): $sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$ Update to V(s): $V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample$ Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$

Exponential Moving Average

- Exponential moving average
 - The running interpolation update

 $\bar{x}_n = (1-\alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$

Makes recent samples more important

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

- Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate can give converging averages

[DEMO – Grid V's]

Example: TD Policy Evaluation

 $V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + \alpha \left[R(s,\pi(s),s') + \gamma V^{\pi}(s')\right]$

(1,1) up -1	(1,1) up -1	
(1,2) up -1	(1,2) up -1	
(1,2) up -1	(1,3) right -1	
(1,3) right -1	(2,3) right -1	
(2,3) right -1	(3,3) right -1	:
(3,3) right -1	(3,2) up -1	
(3,2) up -1	(4,2) exit -100	:
(3,3) right -1	(done)	
(4,3) exit +100		
(done)	Take γ = 1, α = 0.5	

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation
- However, if we want to turn values into a (new) policy, we're sunk:

$$\pi(s) = \arg\max_{a} Q^*(s,a)$$

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^{*}(s') \right]$$

- Idea: learn Q-values directly
- Makes action selection model-free too!

Active RL

Full reinforcement learning

- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- You can choose any actions you like
- Goal: learn the optimal policy / values
- ... what value iteration did!

In this case:

- Learner makes choices!
- Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning! You actually take actions in the world and find out what happens...

Detour: Q-Value Iteration

- Value iteration: find successive approx optimal values
 - Start with V₀^{*}(s) = 0, which we know is right (why?)
 - Given V_i^{*}, calculate the values for all states for depth i+1:

$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

- But Q-values are more useful!
 - Start with Q₀^{*}(s,a) = 0, which we know is right (why?)
 - Given Q_i^{*}, calculate the q-values for all q-states for depth i+1:

$$Q_{i+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_i(s',a') \right]$$

[DEMO - Grid Q's]

Q-Learning

- Q-Learning: sample-based Q-value iteration
- Learn Q*(s,a) values
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

$$Q^*(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q^*(s',a') \right]$$
$$sample = R(s,a,s') + \gamma \max_{a'} Q(s',a')$$

Incorporate the new estimate into a running average:
Q(s, a) ← (1 − α)Q(s, a) + (α) [sample]

[DEMO - Grid Q's]

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy
 - If you explore enough
 - If you make the learning rate small enough
 - ... but not decrease it too quickly!
 - Basically doesn't matter how you select actions (!)
- Neat property: off-policy learning
 - learn optimal policy without following it (some caveats)

Exploration / Exploitation

Several schemes for forcing exploration

- Simplest: random actions (ε greedy)
 - Every time step, flip a coin
 - With probability ε, act randomly
 - With probability 1-ε, act according to current policy
- Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

Exploration Functions

When to explore

- Random actions: explore a fixed amount
- Better idea: explore areas whose badness is not (yet) established
- Exploration function
 - Takes a value estimate and a count, and returns an optimistic utility, e.g. f(u, n) = u + k/n (exact form not important)

$$Q_{i+1}(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} Q_i(s',a')$$
$$Q_{i+1}(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} f(Q_i(s',a'), N(s',a'))$$

The Story So Far: MDPs and RL

Things we know how to do:

- If we know the MDP
 - Compute V*, Q*, π* exactly
 - Evaluate a fixed policy π
- If we don't know the MDP
 - We can estimate the MDP then solve
 - We can estimate V for a fixed policy π
 - We can estimate Q*(s,a) for the optimal policy while executing an exploration policy

Techniques:

- Model-based DPs
 - Value Iteration
 - Policy evaluation

- Model-based RL
- Model-free RL
 - Value learning
 - Q-learning