
Reinforcement Learning 1

Adapted from slides kindly shared by Stuart Russell

1

Appreciations

♦ Piazza

Share some of yours?

2

Reinforcement Learning

� Basic idea:
� Receive feedback in the form of rewards
� Agent’s utility is defined by the reward function
� Must (learn to) act so as to maximize expected rewards

[DEMOS]

Reinforcement Learning

� Reinforcement learning:
� Still assume an MDP:

� A set of states s ∈ S

� A set of actions (per state) A

� A model T(s,a,s’)

� A reward function R(s,a,s’)

� Still looking for a policy π(s)

� New twist: don’t know T or R
� I.e. don’t know which states are good or what the actions do

� Must actually try actions and states out to learn

[DEMO]

3

Passive RL

� Simplified task
� You are given a policy π(s)
� You don’t know the transitions T(s,a,s’)
� You don’t know the rewards R(s,a,s’)
� Goal: learn the state values
� … what policy evaluation did

� In this case:
� Learner “along for the ride”
� No choice about what actions to take
� Just execute the policy and learn from experience
� We’ll get to the active case soon
� This is NOT offline planning! You actually take actions in the

world and see what happens…

4

Example: Direct Evaluation

� Episodes:

x

y

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

V(2,3) ~ (96 + -103) / 2 = -3.5

V(3,3) ~ (99 + 97 + -102) / 3 = 31.3

γ = 1, R = -1

+100

-100

5

[DEMO – Optimal Policy]

Recap: Model-Based Policy Evaluation

� Simplified Bellman updates to
calculate V for a fixed policy:
� New V is expected one-step-look-

ahead using current V
� Unfortunately, need T and R

6

π(s)

s

s, π(s)

s, π(s),s’

s’

Model-Based Learning

� Idea:
� Learn the model empirically through experience
� Solve for values as if the learned model were correct

� Simple empirical model learning
� Count outcomes for each s,a
� Normalize to give estimate of T(s,a,s’)
� Discover R(s,a,s’) when we experience (s,a,s’)

� Solving the MDP with the learned model
� Iterative policy evaluation, for example

7

π(s)

s

s, π(s)

s, π(s),s’

s’

Example: Model-Based Learning

� Episodes:

x

y

T(<3,3>, right, <4,3>) = 1 / 3

T(<2,3>, right, <3,3>) = 2 / 2

+100

-100

γ = 1

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

8

Example: Expected Age

9

Goal: Compute expected age of cs188 students

Known P(A)

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Model-Free Learning
� Want to compute an expectation weighted by P(x):

� Model-based: estimate P(x) from samples, compute expectation

� Model-free: estimate expectation directly from samples

� Why does this work? Because samples appear with the right
frequencies!

10

Sample-Based Policy Evaluation?

� Who needs T and R? Approximate the
expectation with samples of s’ (drawn from T!)

11

π(s)

s

s, π(s)

s1’s2’ s3’

s, π(s),s’

s’

Almost! But we can’t
rewind time to get sample
after sample from state s.

Temporal-Difference Learning

� Big idea: learn from every experience!
� Update V(s) each time we experience (s,a,s’,r)
� Likely s’ will contribute updates more often

� Temporal difference learning
� Policy still fixed!
� Move values toward value of whatever

successor occurs: running average!

12

π(s)

s

s, π(s)

s’

Sample of V(s):

Update to V(s):

Same update:

Exponential Moving Average

� Exponential moving average
� The running interpolation update

� Makes recent samples more important

� Forgets about the past (distant past values were wrong anyway)

� Decreasing learning rate can give converging averages

13

Example: TD Policy Evaluation

Take γ = 1, α = 0.5

(1,1) up -1

(1,2) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(3,3) right -1

(4,3) exit +100

(done)

(1,1) up -1

(1,2) up -1

(1,3) right -1

(2,3) right -1

(3,3) right -1

(3,2) up -1

(4,2) exit -100

(done)

14

[DEMO – Grid V’s]

Problems with TD Value Learning

� TD value leaning is a model-free way
to do policy evaluation

� However, if we want to turn values into
a (new) policy, we’re sunk:

� Idea: learn Q-values directly
� Makes action selection model-free too!

a

s

s, a

s,a,s’
s’

15

Active RL

� Full reinforcement learning
� You don’t know the transitions T(s,a,s’)
� You don’t know the rewards R(s,a,s’)
� You can choose any actions you like
� Goal: learn the optimal policy / values
� … what value iteration did!

� In this case:
� Learner makes choices!
� Fundamental tradeoff: exploration vs. exploitation
� This is NOT offline planning! You actually take actions in the

world and find out what happens…

16

Detour: Q-Value Iteration

� Value iteration: find successive approx optimal values
� Start with V0

*(s) = 0, which we know is right (why?)
� Given Vi

*, calculate the values for all states for depth i+1:

� But Q-values are more useful!
� Start with Q0

*(s,a) = 0, which we know is right (why?)
� Given Qi

*, calculate the q-values for all q-states for depth i+1:

17

Q-Learning

� Q-Learning: sample-based Q-value iteration
� Learn Q*(s,a) values

� Receive a sample (s,a,s’,r)
� Consider your old estimate:
� Consider your new sample estimate:

� Incorporate the new estimate into a running average:

[DEMO – Grid Q’s]

18

Q-Learning Properties

� Amazing result: Q-learning converges to optimal policy
� If you explore enough

� If you make the learning rate small enough

� … but not decrease it too quickly!

� Basically doesn’t matter how you select actions (!)

� Neat property: off-policy learning
� learn optimal policy without following it (some caveats)

S E S E

[DEMO – Grid Q’s]

19

Exploration / Exploitation

� Several schemes for forcing exploration
� Simplest: random actions (ε greedy)

� Every time step, flip a coin
� With probability ε, act randomly
� With probability 1-ε, act according to current policy

� Problems with random actions?
� You do explore the space, but keep thrashing

around once learning is done
� One solution: lower ε over time
� Another solution: exploration functions

20

Q-Learning

� Q-learning produces tables of q-values:

[DEMO – Crawler Q’s]

21

Exploration Functions

� When to explore
� Random actions: explore a fixed amount

� Better idea: explore areas whose badness is not (yet)
established

� Exploration function
� Takes a value estimate and a count, and returns an optimistic

utility, e.g. (exact form not important)

22

The Story So Far: MDPs and RL

� If we know the MDP
� Compute V*, Q*, π* exactly

� Evaluate a fixed policy π

� If we don’t know the MDP
� We can estimate the MDP then solve

� We can estimate V for a fixed policy π
� We can estimate Q*(s,a) for the

optimal policy while executing an
exploration policy

23

� Model-based DPs
� Value Iteration

� Policy evaluation

� Model-based RL

� Model-free RL
� Value learning

� Q-learning

Things we know how to do: Techniques:

