REINFORCEMENT LEARNING 1

Adapted from slides kindly shared by Stuart Russell

Appreciations

> Piazza

Share some of yours?

Reinforcement Learning

Basic idea:

= Receive feedback in the form of rewards
= Agent’s utility is defined by the reward function
= Must (learn to) act so as to maximize expected rewards

state reward

Fisi

Lgi

= —

-

St

|

Environment]""—

[DEMOS]

action
¥

Reinforcement Learning

» Reinforcement learning:
= Still assume an MDP:

= Asetofstatess S
= A set of actions (per state) A /

= A model T(s,a,s")
= A reward function R(s,a,s’) [DEMO]
= Still looking for a policy 11(s)

= New twist: don’t know T or R
= |.e. don't know which states are good or what the actions do
= Must actually try actions and states out to learn

Passive RL

= Simplified task
= You are given a policy 1(s) di . =
= You don't know the transitions T(s,a,s’) |- -
= You don’t know the rewards R(s,a,s’) PE— ”

= Goal: learn the state values
= ... what policy evaluation did

In this case:
= Learner “along for the ride”
= No choice about what actions to take
= Just execute the policy and learn from experience
= We'll get to the active case soon

= This is NOT offline planning! You actually take actions in the
world and see what happens...

[DEMO — Optimal Policy]

Example: Direct Evaluation

y
» Episodes: :
(1, up-1 (1,1)up-1 ,
1,2)up-1 1,2)up-1
1,2)up-1 (1,3) right -1 1
(1,3) right -1 (2,3) right -1
(2,3) right -1 (3,3) right -1 ! 2 : ¢
(3,3) right -1 (3,2)up-1 y=1,R=-1
B2 up-1 (4,2) exit -100
(3,3) right -1 (done)
(4,3) exit +100 V(2,3) ~ (96 +-103) / 2 = -3.5
(done)

V(3,3) ~ (99 + 97 +-102) / 3 = 31.3

Recap: Model-Based Policy Evaluation

= Simplified Bellman updates to
calculate V for a fixed policy:

= New V is expected one-step-look-
ahead using current V

= Unfortunately, need T and R

VZ(s) =0

Vii(s) < > T(s,m(s),s)[R(s,m(s),s") + vV (s)]

S

Model-Based Learning

= |dea:
= Learn the model empirically through experience
= Solve for values as if the learned model were correct

= Simple empirical model learning
= Count outcomes for each s,a
= Normalize to give estimate of T(s,a,s’)
= Discover R(s,a,s’) when we experience (s,a,s")

= Solving the MDP with the learned model
= |terative policy evaluation, for example

Via(s) < > T(s,m(s),s)[R(s,m(s),8") + Vi (s)]

S

Example: Model-Based Learning

y
» Episodes: :
(1,1)up-1 1,1)up-1)
(1,2)up-1 1,2)up-1
(1,2)up -1 (1,3) right -1 1
(1,3) right -1 (2,3) right -1
(2,3) right -1 (3,3) right -1 ! 2 : 4
(3,3) right -1 (3.2) up -1 y=1
(3,2 up-1 (4,2) exit -100
(3.3) right -1 (done) T(<3,3>, right, <4,3>) = 1/3
(4,3) exit +100 T(<2,3>, right, <3,3>)=2/2

(done)

Example: Expected Age

Goal: Compute expected age of cs188 students

Known P(A)

LAl "Dl
HA (@)

=3 a — ()95 w 20 1
[Al=3% Pla)-a 0.35 x 20

Without P(A), instead collect samples [a;, a,, ... ay]

Unknown P(A): “Model Based” Unknown P(A): “Model Free”
- num(a)
P =
(a) = —

E[A] = %Zai

Model-Free Learning

Want to compute an expectation weighted by P(x):
Elf(@)] = X, P(z)f(z)

Model-based: estimate P(x) from samples, compute expectation

P(z) = num(z)/N)

Model-free: estimate expectation directly from samples
x; ~ P(x) E[f(x)] = & 22, f(2i)

Why does this work? Because samples appear with the right
frequencies!

10

Sample-Based Policy Evaluation?

Vi1(s) <Y T(s,m(s),s)[R(s,7(s),s") + V] (s)]

Who needs T and R? Approximate the
expectation with samples of s’ (drawn from T!)

sampler = R(s,m(s),s}) +~yV(s7) AN
samples = R(s,m(s),s5) + V" (s5) “As,

sampley, = R(s,m(s), s}) + V7" (s},)

1 :

0 - . Almost! But we can't
V;‘Fl (S) k Z samplel rewind time to get sample
1

after sample from state s.
1

Temporal-Difference Learning

Big idea: learn from every experience!

= Update V(s) each time we experience (s,a,s’,r) s
= Likely s’ will contribute updates more often T(S)
s, T(S)
Temporal difference learning
= Policy still fixed! A
= Move values toward value of whatever S
successor occurs: running average!
/ /
Sample of V(s): sample = R(s,m(s),s") +~yV"(s")
Update to V(s): VT(s) «— (1 —a)V"(s) + (a)sample
Same update: VT (s) «— V™(s) + a(sample — V™ (s))

12

Exponential Moving Average

Exponential moving average
= The running interpolation update

pa—

8 'j:"n—l + Q- Ty

_ (1

= Makes recent samples more important

_ H _i_ (1 —CL’) *Tp—1 _i— (l CL’) *Tp—2 _1_
Tn =
1+4(1—a)+ (1 —a)?2+

= Forgets about the past (distant past values were wrong anyway)

Decreasing learning rate can give converging averages

13

[DEMO — Grid V’s]

Example: TD Policy Evaluation

VT(s) — (1 = a)V™(s) + a [R(s,7(s),s) + V(5]

(1,1)up-1 1,1)up-1 R [N
(1L2)up-1 (12)up-1 A t =
(1,2)up -1 (1,3) right -1 L I N [Py [y
(1,3) right -1 (2,3) right -1 v
(2,3) right -1 (3,3) right -1 3

(3,3) right -1 (3,2)up-1

(3,2 up-1 (4,2) exit -100 2]

(3,3) right -1 (done)

(4,3) exit +100 1

(done)

Takey=1,a=05

14

Problems with TD Value Learning

TD value leaning is a model-free way
to do policy evaluation)
However, if we want to turn values into ~ ~~

a (new) policy, we’re sunk: ‘

m(s) = argmax Q*(s,a)

Q*(s,a) = ZT(S, a,s’) [R(s,a, s') + ﬂ/V*(s')]

8

Idea: learn Q-values directly
Makes action selection model-free too!

15

e e
= Full reinforcement learning
= You don't know the transitions T(s,a,s’) di . b=
= You don't know the rewards R(s,a,s’) ===
= You can choose any actions you like .

Active RL

Goal: learn the optimal policy / values
... what value iteration did!

In this case:

Learner makes choices!
Fundamental tradeoff: exploration vs. exploitation

This is NOT offline planning! You actually take actions in the
world and find out what happens...

16

Detour: Q-Value Iteration

= Value iteration: find successive approx optimal values
= Start with V*(s) = 0, which we know is right (why?)
» Given V', calculate the values for all states for depth i+1:

Vig1(s) «— maaXZT(s,a, s') [R(s,a, s + ’)/Vi(s/)}

S

= But Q-values are more useful!
= Start with Q,'(s,a) = 0, which we know is right (why?)
» Given Qy, calculate the g-values for all g-states for depth i+1:

Qita(s.a) = L T(s,a,5) [R(s,a,5) + maxQ(s',a)

S

17

[DEMO — Grid Q’s]

Q-Learning

» Q-Learning: sample-based Q-value iteration
» Learn Q*(s,a) values

Receive a sample (s,a,s’,r)
Consider your old estimate: Q(s,a)
Consider your new sample estimate:

‘ (
) — 1 s, a]

sample = R(s,a,s’) +~ max Q(s,d)
a

Incorporate the new estimate into a running average:
Q(s,a) — (1 = a)Q(s,a) + () [sample]

18

[DEMO - Grid Q’s]

Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy
= If you explore enough
= If you make the learning rate small enough
= ... but not decrease it too quickly!
= Basically doesn’t matter how you select actions (!)

= Neat property: off-policy learning
= |earn optimal policy without following it (some caveats)

19

Exploration / Exploitation

= Several schemes for forcing exploration

» Simplest: random actions (€ greedy)
= Every time step, flip a coin
= With probability €, act randomly
= With probability 1-¢, act according to current policy

= Problems with random actions?

= You do explore the space, but keep thrashing
around once learning is done

= One solution: lower € over time
= Another solution: exploration functions

20

[DEMO - Crawler Q’s]
Q-Learning

= Q-learning produces tables of g-values:

0.4

Exploration Functions

= When to explore
= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not (yet)
established

= Exploration function

= Takes a value estimate and a count, and returns an optimistic
utility, e.g. f(u,n) = u + k/n (exact form not important)

Qi+1(87 CL) o R('Sa a, 5/) + Y ma?X Qi(3/7 a/)

Qi+l(s7 a) o R(Sv a, SI) + Y m(?X f(Qi(S/> al)v N(Slv a,>)

22

The Story So Far: MDPs and RL

Things we know how to do: Techniques:

= |f we know the MDP * Model-based DPs
= Compute V*, Q*, * exactly = Value lteration
= Evaluate a fixed policy 1t = Policy evaluation

= |f we don’t know the MDP
= We can estimate the MDP then solve = Model-based RL

= We can estimate V for a fixed policy 1t

= We can estimate Q*(s,a) for the Model-free R_L
optimal policy while executing an = Value learning
exploration policy = Q-learning

23

