Review of AI

REVIEW

Adapted from slides kindly shared by Stuart Russell

Review 1

Appreciations

 \diamondsuit Straightforward communication

Share some of yours?

Announcements

Project P4: Ghostbusters out, due Dec 19 - but understand it before the final exam....

Still time to participate on Piazza and improve your score there. But no "me too!" posts....

It is still an option to re-submit previous projects for 1/2 credit on incremental improvement over original

NB: Final Exam in ECCR 200 Tuesday 2012-12-18 04:30 PM - 07:00 PM

Final: closed book; 2 pages of notes OK; non-programmable calculator optional; 50% on new material

See Piazza for topics, practice exams

Outline

- \diamondsuit What to study
- \Diamond Big picture
- \diamondsuit Review major topics

What to study

- \diamondsuit Study material we spent a lot of time on
- \Diamond Try practice exams
- \diamond Review homeworks

Big picture

Agents interact with environments through actuators and sensors

The agent function describes what the agent does in all circumstances

The performance measure evaluates the environment sequence

A perfectly rational agent maximizes expected performance

Agent programs implement (some) agent functions

Environments are categorized along several dimensions: observable? deterministic? episodic? static? discrete? single-agent?

Several basic agent architectures exist: reflex, reflex with state, goal-based, utility-based

Problem types

Deterministic, fully observable \implies single-state problem Agent knows exactly which state it will be in; solution is a sequence

Non-observable \implies conformant problem Agent may have no idea where it is Solution (if any) is a sequence in belief space

Nondeterministic and/or partially observable \implies contingency problem percepts provide **new** information about current state solution is a contingent plan or a policy often **interleave** search, execution

Unknown state space \implies exploration problem ("online")

Search

- BFS, DFS, UCS, A*, Greedy search (tree and graph)
- Search algorithms' strengths and weaknesses
- Properties: completeness, optimality
- \bullet Admissibility and consistency for A^*
- Be able to formulate search problems and create heuristics

Constraint Satisfaction Problems

- Basic definitions and solution with DFS (Backtracking search)
- Efficiency: ordering and checking
 - Variable choice: Minimum Remaining Values
 - Value choice: Least constraining value
 - Forward checking
 - Constraint propagation, e.g. arc consistency
- Conditions under which CSPs are efficiently solvable: tree structure etc.
- Local search for CSPs: min-conflicts
- Be able to formulate CSPs

Games

- Representation, game trees
- Minimax search
- Alpha-beta pruning
- Expectimax search
- Evaluation functions
- Metareasoning

MDP trees vs Expectimax

Markov Decision Processes - a family of non-deterministic search problems

States $s \in S$, start state s_0 , actions $a \in A$

Transition function, like Successor function

 $\underline{\text{Model}}\ T(s,a,s') \equiv P(s'|s,a) = \text{probability that } a \text{ in } s \text{ leads to } s'$

Q-states, like choice nodes

Reward function R(s) (or R(s, a), R(s, a, s')), vs prize at the end

MDPs - Nondeterministic search

- The maximum expected utilitiy (MEU) principle
- Reflex agents and policies
- Markov decision process definition
- Reward functions, values and q-values
- Bellman Equations:
- $V^*(s) = max_aQ^*(s, a)$
- $Q^*(s,a) = \sum_{s'} T(s,a,s') [R(s,a,s') + \gamma V^*(s')]$
- Value and policy iteration
- Be able to formulate a problem as an MDP

Reinforcement Learning

- Exploration vs exploitation
- Epsilon-greedy
- Model-based and model-free learning
- Temporal-Difference value learning / Q-learning
- Weighted features and linear value function approximation

Probability

- Conditional probabilities, product rule, chain rule, Bayes rule
- Joint, conditional and marginal distributions
- Independence and conditional independence
- Inference by enumeration from joint distributions

Bayes' Nets

- Representation and semantics
- Building joint distributions from conditional probability tables
- Inference from joint distributions
- Bayes net \Rightarrow Joint \Rightarrow Query
- Conditional independence and d-separation
- Variable elimination
- Sampling / approximate inference
- Formulating Bayes' nets for problems

VPI

- Drawing and reasoning about decision networks
- Finding actions that maximize expected utilities
- Manipulating Bayes' nets to compute conditional probabilities
- Computing VPI of a random variable

Hidden Markov Models

- HMM structure and Bayes' net properties
- Forward algorithm, computing belief distributions