Week 6: §6.2–§6.4

Binomial Distributions

Suppose we have a binomial experiment with n trials. We can define a random variable X to be the number of successes, so X ranges from 0 to n.

Definition: For a given n and p, let $b(k) = C(n,k)p^kq^{n-k}$, the probability of getting exactly k successes. We sometimes write b(k; n, p) when we want to emphasize or clarify the values of n and p. The probability distribution of the associated random variable X is called the **binomial distribution**.

Recall the coffee problem from the previous activity. There, you were asked to determine the probability that at most three students out of 20 prefer coffee. Getting a numerical answer for such a question is tedious, so we have binomial distribution tables that allow us to look up the numerical answers for many such problems.

Definition: For a given n and p, let $B(x) = b(0) + b(1) + \cdots + b(x)$, the probability of getting at most x successes. We sometimes write B(x; n, p) when we want to emphasize or clarify the values of n and p. This is called the **cumulative binomial distribution function**. The table in Appendix A gives values of B for various values of x, y, and y.

1. Use the table in Appendix A to find the probability of getting at most five successes in a binomial experiment with eleven trials and a probability of success p = 0.25.

2. Use the table to find the probability of getting exactly five successes in a binomial experiment with eleven trials and a probability of success p = 0.25. (Hint: think of how B is defined in terms of b.)

3. Write b(x) in terms of the function B.

$$b(x) = B(x) - B(x-1)$$

4. The table gives us probabilities of getting at most a certain number of successes. How can we use it to find the probability of getting at least a specified number of successes, for example at least three successes in seven trials with n = 0.35?

$$b(3) + ... + b(7) = 1 - (b(0) + b(1) + b(2))$$

$$= 1 - B(2; 7, 0.35)$$

$$= 1 - 0.5323$$

5. The values of p in the table are no greater than 0.5. How can we use the table to find, for example, B(3; 9, 0.6)?

Switch she roles of success and failure, so
$$B(3; 9, 0.6)$$
 is she same as she probability of getting at least 6 failures ($q = 0.4$), which as in #4 is $1 - B(5; 9, 0.4)$, or $1 - 0.9006$.

6. Find the probability of getting at least five successes in a binomial experiment with eleven trials and a probability of success p = 0.25.

7. Find the probability of getting at least five successes in a binomial experiment with eleven trials and a probability of success p = 0.7.

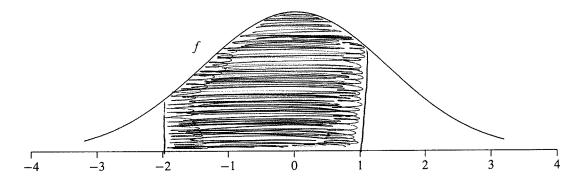
This is the probability of getting at most six failures (
$$q=0.3$$
), which is $B(6;11,0.3)=0.9784$.

Normal Distributions

Definition: A continuous random variable is one that can take on any value on some interval of real numbers.

Recall that a histogram is a visual representation of a random variable, and that the total area under all of the bars is 1. With a continuous random variable, instead of bars we use a **probability density function**, the area under whose graph is 1.

1. In the following graph of a probability density function f of a random variable X, shade the area corresponding to X being between -2 and 1.



Definition: The *standard normal distribution*, whose associated random variable we denote by Z, is given by a curve like that above such that the mean μ is 0 and the standard deviation σ is 1.

2. Use the table in Appendix B to find the following probabilities.

a)
$$Pr(Z \le 2.1) = 0.9821$$

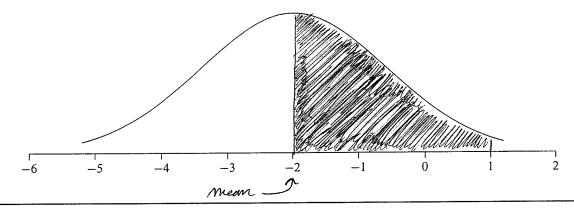
b)
$$Pr(Z \le 2.14) = O.9838$$

c)
$$Pr(-2 \le Z \le 1) = Pr(\overline{z} \le 1) - Pr(\overline{z} \le -z) = 0.8413 - 0.0228$$

d)
$$Pr(Z \ge 0.5)$$
 $\left| -P_r \left(z \le 0.5 \right) \right| = 1 - 0.6915$

Definition: A normal distribution is determined by a curve like the one that determines the standard normal distribution, but we are now free to change the mean μ and standard deviation σ .

3. Suppose that the following graph is a normal distribution determined by a random variable X. Label the mean, and shade the area corresponding to X being between -2 and 1.



Remark: We can use the same table in Appendix B to find values like $Pr(X \le 0)$ by using the following facts. If X has mean μ and standard variation σ , then

$$Z = \frac{X - \mu}{\sigma},$$

which means that

$$\Pr(a \le X \le b) = \Pr\left(\frac{a-\mu}{\sigma} \le Z \le \frac{b-\mu}{\sigma}\right)$$

4. Suppose that X is a normally distributed random variable with $\mu = 2$ and $\sigma = 0.5$. Use the table in Appendix B to find the following probabilities.

a)
$$\Pr(X \le 2.1)$$
 $\Pr(Z \le \frac{2.1-7}{0.5}) = \Pr(Z \le 0.7) = 0.5793$

b)
$$Pr(X \le 2.14)$$
 $Pr\left(Z \le \frac{2.14-2}{0.5}\right) = Pr\left(Z \le 0.28\right) = 0.6103$

c)
$$Pr(1 \le X \le 2.1)$$
 $P_r(z \le 0.2) - P_r(z \le \frac{1-2}{0.5}) = 0.5793 - P_r(z \le -2)$
= 0.5793 - 0.228

d)
$$Pr(X \ge 0.5)$$
 $\left[-P_r \left(X \le 0.5 \right) \right]$
= $1 - P_r \left(Z \le \frac{0.5 - 2}{0.5} \right)$
= $1 - P_r \left(Z \le -3 \right) = 1 - 0.0013$