
CS 314H Algorithms and Data Structures — Fall 2012 Programming Assignment #3
Critters Due September 28, 2012

In this assignment you will work in pairs to simulate critters that behave according to some well-defined set of
instructions. Your task consists of three components. First, you will write a simple interpreter that reads a set of
instructions and performs the appropriate behavior for onecritter. Second, you will create a test harness and explain
how you used it to test your interpreter. Third, you will design and submit one critter to participate in the annual
CritterFest competition. Each team needs to submit one critter by the due date, but you will likely have additional time
to perfect your critters before the actual competition (we will provide details about the contest later).

This assignment requires a bit more code than the previous ones, so we suggest that you develop and test your code
in pieces to minimize debugging time.We strongly encourage you to read the submission directionscarefully
before you start working.

1 The Simulated World

The simulated world is a 2D grid of squares, where each squarecan hold one critter. Each critter has a graphical repre-
sentation, has a heading, belongs to a particular species, and behaves according to a set of species-specific instructions.
After some random initial placement of critters, each critter takes a turn at performing some actions, such as moving
to another square or eating another critter.

1.1 Terminology:

A headingis the direction a critter is facing. Measured in degrees, the possible headings are 0, 45, 90, 135, 180,
225, 270, and 315.

A bearingis an angular difference between two headings, measured in degrees clockwise. The possible bearings
are 0, 45, 90, 135, 180, 225, 270, and 315.

An enemyof a critter is any critter of a different species.

An ally of a critter is any critter of the same species.

A behavior fileis a file that contains the specification of a critter species’behavior. Similarly, thebehavior code
is the set of instructions in a behavior file that controls thespecies’ behavior.

A registeris one of ten registers, namedr1 thoughr10, that can hold an integral value.Note: If you do not
name your registers as specified, your program will be incorrect. In particular, ther is part of the register name.

1.2 Species Programming Language

The behavior of each species is defined by a simple program that consists of the following instructions.

hop The critter moves forward if the square that it’s facing is empty.

left The critter turns left 45 degrees to face a new direction.

right The critter turns right 45 degrees to face a new direction.

infect n If the square immediately in front of this critter is occupied by an enemy, the enemy
critter is infected and becomes a member of the infecting critter’s species (converting
an enemy to an ally). The infected critter retains the same position and heading, but
behaves like the infecting species starting at thenth instruction. The parametern is an
optional parameter; if missing, the infected species begins executing its new program
at the first instruction.

1



eat If the square immediately in front of this critter is occupied by an enemy, the enemy
critter is lightly sauteed and treated as a comestible. After this turn the enemy critter
no longer exists.

go n This instruction always jumps to another line in the behavior code. Ifn is preceded
by a ’+’ or ’-’ character the jump is a relative jump, and execution should continue at
the current instruction +/-n. If n has no prefix, it is an absolute jump, and execution
should continue at thenth instruction in the critter’s behavior code. All further
instructions that perform jumps may use either the absoluteor relative notation for an
instruction line numbern.

ifrandom n This instruction randomly jumps to thenth instruction half of the time and is a no-op
the rest of the time.

ifempty b n The first parameter,b, is a bearing. If the adjacent square at the specified bearingis
unoccupied, the critter will jump to thenth instruction.

ifally b n If the adjacent square at the specified bearing is occupied bya critter of the same
species, the critter will jump to thenth instruction; otherwise, continue execution with
the next instruction.

ifenemy b n If the adjacent square at the specified bearing is occupied bya critter of a different
species, execution will jump to thenth instruction; otherwise, continue execution with
the next instruction.

ifwall b n If the critter is adjacent to the border of the world at the specified bearing (that is,
there are no more squares in that direction), the critter will jump to thenth instruction;
otherwise, continue execution with the next instruction.

ifangle b1 b2 n If the off-angle (difference in heading) between the executing critter and the critter at
bearingb1 matches bearingb2, the critter will jump to thenth instruction; otherwise,
continue execution with the next instruction.

write r v Write the integerv into registerr.

add r1 r2 Add the value of registerr2 to that ofr1 and store the result inr1.

sub r1 r2 Subtract the value of registerr2 from that ofr1 and store the result inr1.

inc r1 Increment the value of registerr1.

dec r1 Decrement the value of registerr1.

iflt r1 r2 n If the value of registerr1 is less than the value ofr2, jump to thenth instruction;
otherwise continue execution with the next instruction.

ifeq r1 r2 n If the value of registerr1 is equal to the value ofr2, jump to thenth instruction;
otherwise continue execution with the next instruction.

ifgt r1 r2 n If the value of registerr1 is greater than the value ofr2, jump to thenth instruction;
otherwise continue execution with the next instruction.

A critter executes any number ofif, go or state-manipulation instructions without relinquishing its turn. That is,
the instructions listed on this page do not terminate a turn.A critter’s turn ends when it executes any of the following
instructions:hop, left, right, infect, or eat. On subsequent turns, the critter resumes execution from the
point at which its previous turn ended.

Each behavior file contains the species name on the first line,followed by a sequence of instructions, where each
instruction resides on a separate line. The program ends with a blank line. Any text after the blank line is ignored and

2



can be used to provide comments about the Critter’s behavior. An example behavior file, for species Flytrap, is given
below:

Flytrap
ifenemy 0 4
left
go 1
infect
go 1

The flytrap sits in one place and spins.
It infects anything which comes in front of it.
Flytraps do well when they clump.

In addition to the Flytrap, we will provide you with the following behavior files.

Food This critter spins in a square but never infects anything. Its only purpose
is to serve as food for other critters.

Hop This critter just keeps hopping forward until it reaches a wall. This critter
is not very interesting, but it’s useful for debugging.

Rover This critter walks in a straight line until it is blocked, infecting any ene-
mies that it sees. When it can’t move forward, it turns.

2 Your Assignment

To get started with the construction of your interpreter, retrieve the provided files from the TA’s webpage, which also
contains documentation for the API that you will be using. Inthe species subdirectory of the distribution you
will find several example creatures, and you should place anycreatures you create in this subdirectory as well (the
simulation system will automatically load all creatures inthis subdirectory).

You should implement a class calledInterpreter that implements the providedCritterInterpreter
interface. ClassInterpreter will perform two tasks; theloadSpecies method will read critter behavior files,
and theexecuteCritter method will execute critter behavior code, where the legal commands for behavior code
are specified in Section 1.2. While you must implement theloadSpecies andexecuteCritter methods, you
may define additional helper methods if you wish.

2.1 TheloadSpecies Method

Before the critters can start battling in their simulated world, the information for each species of critter must be read
from a behavior file. TheloadSpecies method, which is called several times from elsewhere in the simulation
system, loads a behavior file. This method takes a String argument specifying a behavior file, and should read the
specified file and construct aCritterSpecies object containing the read information for that critter species.

The two most important elements of information in a behaviorfile are the critter species name and the behavior
code. TheCritterSpecies class is designed to record both pieces of information. The species name is stored
as a String and the behavior code may be stored in any List class (ArrayList, LinkedList, and Vector are available
in the java.util package). Exactly how you store the behavior code inside theList is up to you, but be aware that
you will be using this representation during execution of behavior code, so make your storage easy to work with.
TheloadSpeciesmethod should return a newly constructedCritterSpecies object containing the above two
species elements.

Once you implement theloadSpeciesmethod correctly, you can run the simulator and can see the game world
populated with critters! However, the critters won’t move until you finish the next method...

3



2.2 TheexecuteCritter Method

As the critter simulation is running, the simulation systemneeds to know what actions each critter wishs to make. Ev-
ery turn, each critter must select an action to perform by having its behavior code executed, and theexecuteCritter
method handles this execution.ExecuteCritter takes as a parameter aCritter object, indicating the critter
whose behavior code should be executed. This method should retrieve the critter’s behavior code, using thegetCode
method of theCritter class, execute the behavior code, and subsequently call oneof theCritter class’ action
methods,hop, left, right, eat, or infect. The action methods donot actually move, turn, eat, or infect any
critters, they simply record what a critter’s next action will be (used by the simulation system later). Once one of the
action methods has been executed,executeCritter should finish up and return. One of the action methods should
be called beforeexecuteCritter returns, otherwise that critter will forfeit its action!

Many of the commands in the behavioral language test whetheranything is near a critter, i.e.ifally or
ifenemy. TheCritter class contains two methods,getCellContent andgetOffAngle that you can use to
implement those instructions. See the online documentation for detailed descriptions of those methods.

Each critter has its own set of 10 integer registers it can useto store information. TheCritter class methods
getReg andsetReg allow your interpreter to read and write the contents of those registers.

Finally, your interpreter must be able to record where it last stopped executing behavior code for each critter. The
Critter class methodsgetNextCodeLine andsetNextCodeLine allow you to record this information.

Once you finish implementing this method, fire upCritterApplication and get those critters battling!

2.3 Make a Critter

Now, this exercise wouldn’t be any fun if you didn’t make any critters of your own. Make an interesting critter,i.e.,
one that is more complex than the provided critters. Includein your report an explanation of your critter’s strategy and
how it performs against other critters.

Name your critterlastname.cri, wherelastname is your last name (so Calvin Lin would turn inlin.cri).
You can turn in additional critters (in file names of your choosing), but this one is the one that we will consider “yours”
for the contest.

2.4 About Interfaces

You will notice that we don’t provide source code for the simulation program, only documentation for the interfaces.
The advantage of abstraction and encapsulation is that yourinterpreter need not depend on the simulation engine or
graphical interface that it is plugged into.We will run your interpreter with a different engine than theone we provide
you.However, if you implement the interfaces correctly, it willnot matter what engine your code will be run on.

If you use the command line, you can complete the system with only javac Interpreter.java. If you use
an integrated development environment, you will need to figure out how to add class files to your project. For example,
in Eclipse, you should be able to drag and drop a folder containing these class files into your project to add them or by
selectingFile / Import / File System.

Hint: It will be easier to write the interpreter if you work incrementally, implementing and testing just a few behavior
instructions at a time. Write a simple critter behavior file to test those instructions (you may want to remove the
example critters from the ’creatures’ subdirectory until you’ve implemented all the instructions they use). When
you’ve got those instructions working, implement more.

2.5 Testing

You may be tempted to use the simulated world to test your interpreter, but this simulator is in fact terrible for testing
purposes. (Can you explain why?) Instead, you should createa test harness that allows you to control all inputs and to
monitor all outputs: Here, you probably want to consider thecritter’s location and environment to be part of the input,
as well as the critter’s next command. You can then systematically explore the input space and check for anomalies.

4



3 Bonus Karma Activities

• Part of the fun of this game is to think about how the local behavior of a critter translates into global behavior
when there are many critters. If you have any interesting insights about these behaviors, please share them with
us in your report.

• Designing a combat-effective critter requires much thought and planning. Design many critters and analyze
their relative strengths and weaknesses.

• The critter programming language is very primitive and short on features (for example, there are no proper loop-
ing constructs or structured control flow). One way to address this shortcoming without breaking compatibility
is to implement aCritter compiler. Design a nicer language for critter control and implement acompiler that
translates your nicer critter programs into plain critter programs. Your write-up should include a description of
your language extensions and important design decisions, along with usage instructions and a few examples.

4 CritterFest

Since we require everyone to make a critter, the obvious question is, Who has the fiercest critter? We will conduct a
critter contest after the submission deadline. We will not provide specific details about the format of the contest, so
your critter needs to be generally survivable under varyingmap configurations, population densities, and so on.

5 Submission Deadline

As usual, your submission is due by 5:00pm on the due date.

Pair Programmers: Read these directions carefully.
Each team of pair programmers should submit asinglereport withbothteam members names on it. You may use

either name for your contest critter, and the electronic submission may be done from either name, but make sure that
the files and report credit both partners.

Reports should include a log of the amount of time spent driving and the amount of time spent working individually,
e.g., X drives 1 hour; Y drives 45 minutes; X works alone for 1 hour,etc. Of course, pairs will ideally do the vast
majority of their work together, but it’s more important to be accurate than to give the appearance of being an ideal
pair. Pairs should ideally write the reports together and take turns driving while writing the report.

Pair programmers should include a section in their report discussing their experiences with pair programming.
Was it effective in producing correct code? How does it differ from working alone? What difficulties or issues did you
encounter?

Source code: We only care about the source code that you wrote. If you submit other files from the original distri-
bution they will be disregarded.

Report: In your report, be sure to discuss any important limitationsand design decisions in your interpreter, and
please document your critter and your experience with critter strategy.

Your Critter: Each team is required to design a critter. Put this inlastname.cri, wherelastname is one of
the team member’s last name. If your last name is Wickham or Yu, then please use your partner’s last name.

Acknowledgments. This assignment is a variation of one given by Robert Plummer. We thank Matt Alden for
developing an earlier version of this software; we thank Mike Scott and Ehren Kret for providing Java code to help us
simulate critters; and we thank Walter Chang for his improvements to this assignment.

5


