CS 314H Algorithms and Data Structures — Fall 2012 Programmig Assignment #3
Critters Due September 28, 2012

In this assignment you will work in pairs to simulate critghat behave according to some well-defined set of
instructions. Your task consists of three components.t,Fp@su will write a simple interpreter that reads a set of
instructions and performs the appropriate behavior forariteer. Second, you will create a test harness and explain
how you used it to test your interpreter. Third, you will dgsiand submit one critter to participate in the annual
CritterFest competition. Each team needs to submit onechy the due date, but you will likely have additional time
to perfect your critters before the actual competition (v pvovide details about the contest later).

This assignment requires a bit more code than the previaes 8o we suggest that you develop and test your code
in pieces to minimize debugging timéVe strongly encourage you to read the submission directionsarefully
before you start working.

1 The Simulated World

The simulated world is a 2D grid of squares, where each sauaaréold one critter. Each critter has a graphical repre-
sentation, has a heading, belongs to a particular specié$fahaves according to a set of species-specific instnsctio
After some random initial placement of critters, each erithkes a turn at performing some actions, such as moving
to another square or eating another critter.

1.1 Terminology:

A headings the direction a critter is facing. Measured in degreespibssible headings are 0, 45, 90, 135, 180,
225, 270, and 315.

A bearingis an angular difference between two headings, measurestjirees clockwise. The possible bearings
are 0, 45, 90, 135, 180, 225, 270, and 315.

An enemyof a critter is any critter of a different species.
An ally of a critter is any critter of the same species.

A behavior fileis a file that contains the specification of a critter spediesiavior. Similarly, thdehavior code
is the set of instructions in a behavior file that controlsghecies’ behavior.

A registeris one of ten registers, named thoughr 10, that can hold an integral valu&lote: If you do not
name your registers as specified, your program will be irarin particular, the is part of the register name.

1.2 Species Programming Language

The behavior of each species is defined by a simple programdhaists of the following instructions.

hop The critter moves forward if the square that it's facing isogyn
| eft The critter turns left 45 degrees to face a new direction.
right The critter turns right 45 degrees to face a new direction.

i nfect n | Ifthe square immediately in front of this critter is occughiey an enemy, the enem
critter is infected and becomes a member of the infectiritecs species (convertin
an enemy to an ally). The infected critter retains the sans#tipo and heading, bu
behaves like the infecting species starting atrtfeinstruction. The parameteris an
optional parameter; if missing, the infected species segikecuting its new program
at the first instruction.

— Q<

eat If the square immediately in front of this critter is occupiey an enemy, the enem
critter is lightly sauteed and treated as a comestible. rAfftis turn the enemy critter
no longer exists.
gon This instruction always jumps to another line in the behagmde. Ifn is preceded
by a '+’ or -’ character the jump is a relative jump, and exten should continue at
the current instruction +/. If n has no prefix, it is an absolute jump, and execution
should continue at th@!® instruction in the critter's behavior code. All further
instructions that perform jumps may use either the absalutelative notation for ar
instruction line numben.

<

i frandomn This instruction randomly jumps to thé” instruction half of the time and is a no-dp
the rest of the time.

ifemptybn The first parameteb, is a bearing. If the adjacent square at the specified bearing
unoccupied, the critter will jump to the&” instruction.

ifallybn If the adjacent square at the specified bearing is occupiea trjtter of the same
species, the critter will jump to th&” instruction; otherwise, continue execution with
the next instruction.

i fenenybn If the adjacent square at the specified bearing is occupieal dnjtter of a different
species, execution will jump to thé” instruction; otherwise, continue execution with
the next instruction.

ifwall bn If the critter is adjacent to the border of the world at thec#fied bearing (that is
there are no more squares in that direction), the crittéjuitp to then®” instruction;
otherwise, continue execution with the next instruction.

i fangl e b1 b2 n | If the off-angle (difference in heading) between the eximgutritter and the critter at
bearingb1 matches bearing2, the critter will jump to then’” instruction; otherwise
continue execution with the next instruction.

witerw Write the integew into registerr.

add r1 r2 Add the value of registei2 to that ofrl and store the result iri.

sub r1r2 Subtract the value of registe2 from that ofrl and store the result irl.

incrl Increment the value of registet.

dec r1 Decrement the value of registet.

ifltrlr2n If the value of registerl is less than the value aR, jump to then®® instruction;

otherwise continue execution with the next instruction.

ifegrir2n If the value of registerl is equal to the value of2, jump to then’ instruction;
otherwise continue execution with the next instruction.

ifgt rlr2n If the value of registerl is greater than the value @2, jump to then’” instruction;
otherwise continue execution with the next instruction.

A critter executes any number dbf , go or state-manipulation instructions without relinquigiits turn. That is,
the instructions listed on this page do not terminate a tAreritter’s turn ends when it executes any of the following
instructions:hop, | ef t, ri ght, i nfect, oreat. On subsequent turns, the critter resumes execution frem th
point at which its previous turn ended.

Each behavior file contains the species name on the firstfbflewed by a sequence of instructions, where each
instruction resides on a separate line. The program entisaiitank line. Any text after the blank line is ignored and

can be used to provide comments about the Critter's behadioexample behavior file, for species Flytrap, is given
below:

Flytrap
ifeneny 0 4
left

go 1

i nf ect

go 1

The flytrap sits in one place and spins.
It infects anything which cones in front of it.
Flytraps do well when they cl unp.

In addition to the Flytrap, we will provide you with the folling behavior files.

Food This critter spins in a square but never infects anythirgoitly purpose
is to serve as food for other critters.

Hop This critter just keeps hopping forward until it reaches #vilehis critter
is not very interesting, but it's useful for debugging.

Rover This critter walks in a straight line until it is blocked, edting any ene-
mies that it sees. When it can’t move forward, it turns.

2 Your Assignment

To get started with the construction of your interpretetrjege the provided files from the TA's webpage, which also
contains documentation for the API that you will be using.the speci es subdirectory of the distribution you
will find several example creatures, and you should placecasgtures you create in this subdirectory as well (the
simulation system will automatically load all creatureshis subdirectory).

You should implement a class calléaht er pr et er that implements the providetritterl nterpreter
interface. Clas$ nt er pr et er will perform two tasks; thé oadSpeci es method will read critter behavior files,
and theexecut eCri t t er method will execute critter behavior code, where the legaimands for behavior code
are specified in Section 1.2. While you must implementitbadSpeci es andexecut eCri tt er methods, you
may define additional helper methods if you wish.

2.1 Thel oadSpeci es Method

Before the critters can start battling in their simulatedidiothe information for each species of critter must be read
from a behavior file. Thé oadSpeci es method, which is called several times from elsewhere in timelation
system, loads a behavior file. This method takes a Stringnaegu specifying a behavior file, and should read the
specified file and construct@& i t t er Speci es object containing the read information for that critter cips.

The two most important elements of information in a behafilerare the critter species name and the behavior
code. TheCri tter Speci es class is designed to record both pieces of information. Jeeiss name is stored
as a String and the behavior code may be stored in any List ¢hasayList, LinkedList, and Vector are available
in the java.util package). Exactly how you store the behawimle inside thé.i st is up to you, but be aware that
you will be using this representation during execution dfidgor code, so make your storage easy to work with.
Thel oadSpeci es method should return a newly constructad t t er Speci es object containing the above two
species elements.

Once you implement theoadSpeci es method correctly, you can run the simulator and can see tine georld
populated with critters! However, the critters won'’t movgillyou finish the next method...

2.2 TheexecuteCritter Method

As the critter simulation is running, the simulation systeeeds to know what actions each critter wishs to make. Ev-
ery turn, each critter must select an action to perform byrfwpits behavior code executed, and&he=cut eCri tter
method handles this executiofxecut eCri tt er takes as a parametelCai tt er object, indicating the critter
whose behavior code should be executed. This method shettileMe the critter’s behavior code, using thet Code
method of theCri t t er class, execute the behavior code, and subsequently catifaheCri t t er class’ action
methodshop, | eft, ri ght, eat, ori nf ect. The action methods daot actually move, turn, eat, or infect any
critters, they simply record what a critter's next actiorl e (used by the simulation system later). Once one of the
action methods has been executedgcut eCr i t t er should finish up and return. One of the action methods should
be called beforexecut eCri t t er returns, otherwise that critter will forfeit its action!

Many of the commands in the behavioral language test whethgthing is near a critter, i.ei fal ly or
i feneny. TheCritter class contains two methodget Cel | Cont ent andget O f Angl e that you can use to
implement those instructions. See the online documemtétiodetailed descriptions of those methods.

Each critter has its own set of 10 integer registers it cantastore information. Th€ri tter class methods
get Reg andset Reg allow your interpreter to read and write the contents of ¢hegjisters.

Finally, your interpreter must be able to record where it $4spped executing behavior code for each critter. The
Critter class methodget Next CodelLi ne andset Next CodeLi ne allow you to record this information.

Once you finish implementing this method, fire@pi t t er Appl i cat i on and get those critters battling!

2.3 Make a Critter

Now, this exercise wouldn’t be any fun if you didn’t make amitters of your own. Make an interesting crittég.,
one that is more complex than the provided critters. Inclnd@ur report an explanation of your critter’s strategy and
how it performs against other critters.

Name your crittel ast nane. cri ,wherel ast nane is your last name (so Calvin Lin would turnlin n. cri).
You can turn in additional critters (in file names of your chimg), but this one is the one that we will consider “yours”
for the contest.

2.4 About Interfaces

You will notice that we don't provide source code for the slation program, only documentation for the interfaces.
The advantage of abstraction and encapsulation is thatigtarpreter need not depend on the simulation engine or
graphical interface that it is plugged intd/e will run your interpreter with a different engine than thiee we provide
you.However, if you implement the interfaces correctly, it witht matter what engine your code will be run on.

If you use the command line, you can complete the system withjcavac | nt er pret er. j ava. If you use
an integrated development environment, you will need ta@gut how to add class files to your project. For example,
in Eclipse, you should be able to drag and drop a folder comgithese class files into your project to add them or by
selectingFile / Import / File System

Hint: It will be easier to write the interpreter if you work increntelly, implementing and testing just a few behavior

instructions at a time. Write a simple critter behavior fietést those instructions (you may want to remove the
example critters from the 'creatures’ subdirectory untiuive implemented all the instructions they use). When
you've got those instructions working, implement more.

2.5 Testing

You may be tempted to use the simulated world to test yourpng¢er, but this simulator is in fact terrible for testing
purposes. (Can you explain why?) Instead, you should ceetgt harness that allows you to control all inputs and to
monitor all outputs: Here, you probably want to considerdtiter’s location and environment to be part of the input,
as well as the critter’s next command. You can then systealbtiexplore the input space and check for anomalies.

3 Bonus Karma Activities

e Part of the fun of this game is to think about how the local b@veof a critter translates into global behavior
when there are many critters. If you have any interestiniglims about these behaviors, please share them with
us in your report.

e Designing a combat-effective critter requires much thdwgtd planning. Design many critters and analyze
their relative strengths and weaknesses.

e The critter programming language is very primitive and sbarfeatures (for example, there are no proper loop-
ing constructs or structured control flow). One way to adslths shortcoming without breaking compatibility
is to implement &Critter compiler Design a nicer language for critter control and implemeocompiler that
translates your nicer critter programs into plain crittewgrams. Your write-up should include a description of
your language extensions and important design decisitorgg avith usage instructions and a few examples.

4 CritterFest

Since we require everyone to make a critter, the obvioustiumeis, Who has the fiercest critter? We will conduct a
critter contest after the submission deadline. We will naivile specific details about the format of the contest, so
your critter needs to be generally survivable under varpirag configurations, population densities, and so on.

5 Submission Deadline

As usual, your submission is due by 5:00pm on the due date.

Pair Programmers: Read these directions carefully.

Each team of pair programmers should subnsirglereport withbothteam members names on it. You may use
either name for your contest critter, and the electroniergabion may be done from either name, but make sure that
the files and report credit both partners.

Reports should include a log of the amount of time spentmgiaind the amount of time spent working individually,
e.g, X drives 1 hour; Y drives 45 minutes; X works alone for 1 haett,. Of course, pairs will ideally do the vast
majority of their work together, but it's more important te bccurate than to give the appearance of being an ideal
pair. Pairs should ideally write the reports together akd tarns driving while writing the report.

Pair programmers should include a section in their repatidising their experiences with pair programming.
Was it effective in producing correct code? How does it diffem working alone? What difficulties or issues did you
encounter?

Source code: We only care about the source code that you wrote. If you subtiér files from the original distri-
bution they will be disregarded.

Report: In your report, be sure to discuss any important limitatiand design decisions in your interpreter, and
please document your critter and your experience withecrittrategy.

Your Critter; Each team is required to design a critter. Put thisast name. cri , wherel ast namne is one of
the team member’s last name. If your last name is Wickham othén please use your partner’s last name.

Acknowledgments. This assignment is a variation of one given by Robert Plumnveée thank Matt Alden for
developing an earlier version of this software; we thanké/cott and Ehren Kret for providing Java code to help us
simulate critters; and we thank Walter Chang for his impmgats to this assignment.

