CS 314H Algorithms and Data Structures — Fall 2012 Programmig Assignment #4
Tetris Due October 5/0October 12, 2012

In this assignment you will work in pairs to implement Tetaggame invented by Alexey Pazhitnov at the Moscow
Academy of Science. This assignment will emphasize theafldacomposing a large problem into smaller problems
that can be independently tested. This assignment will@d&oyou to build portions of a very simple graphical user
interface, and it will also require you to write portions afde that are very efficient. The first part of the assignment
builds the TetrisPiece class and will be dDetober 5. The second part builds the TetrisBoard class, along withesom
other open-ended goodies, and will be detober 12. The first deadline represents considerably less than htitof
work, so we encourage you to finish Part 1 as soon as possithaisgou can give yourself more than a week for Part
2.

The game of Tetris consists of a 2D grid and a stream of vaisbaped pieces that fall, one at a time, onto the
grid. The goal of the game is to rotate and move the piecebad@s they fall, they are tightly packed and form entire
rows. The rest of the game is best described by playing itybete play the traditional version of the game, in which
blocks can only move down by a distance equal to the heightefdws that are cleared below them). If you have
never played Tetris before, numerous versions can be fonintko

1 The Pieces
There are seven pieces in standard Tetris. As shown belotv,@ace consists of four blocks.
H
| H N
| HE | H B HE HE
EEN HE | HEE EE EE EHNE
The T The Square The Stick The L The Dog

A piece can be rotated counter-clockwise 90 degrees to faothar piece. Of course, enough rotations get you back
to the original piece—for example, rotating a Dog twice geryou back to the original state. Essentially, each Tetris
piece belongs to a family of between one and four distinctions, and your program should represent the distinct
rotations as distinct objects. The Square has one memledbdbs have two, and the L's have four. For example, the
following figure shows the four rotations of the left-handgdavhich will be represented by 4 Piece objects.

1.1 The Body

A piece is represented by the coordinates of its blocks, whie known as thbody of the piece. Each piece has its
own coordinate system with its (0,0) origin in the lower llefind corner of the rectangle that encloses the body. The
coordinates of blocks in the body are relative to that peceigin. Thus, the coordinates of the four points of the
Square piece are as shown below:

En

mn
(0,0) <= the |lower |eft-hand bl ock
(0,1) <= the upper left-hand bl ock

(1,0) <= the lower right-hand bl ock
(1,1) <= the upper right-hand bl ock

Notice that not all pieces will have a block at (0,0). For eptamthe body of the following rotation of the Right
Dog has the body as shown below:

|
N
N
[(0,1), (0,2), (1,0), (1,1)]

A piece is completely defined by its body—all of its other @weristics, such as its height and width, can be
computed from the body. The Right Dog above has a width of 2aameight of 3.

1.2 The Skirt

You will find it useful to maintain theskirt for each piece, which is the lowest y extent of each x cootdiimathe
piece. The skirt will be represented by an array of integetsch is as long as the piece is wide. The skirt for the
Dog above is (1,0). We will assume that pieces do not haveshiolthem—that is, for every x position in the piece’s
coordinate system, there is at least one block in the piedh#b x.

1.3 Rotations

The Piece class needs to provide a way for clients to accesatious piece rotations. The client can ask each piece
for a reference to theext rotation, which yields a reference to a Piece object that represemtsskt counter-clockwise
rotation. Note this immutable paradigm—rather than prewddot at e() method that changes the state of the Piece,
the Piece objects are read-only, and the client can itexagedifferent instances of them. The String class is another
example of this immutable paradigm.

1.4 Rotation Strategy

The overall piece rotation strategy uses a simple, statayahat contains the first rotation for each of the 7 pieces.
Each of the first pieces is the first node in a small circularigdd list of rotations of that piece. The client uses the
next Rot at i on() method to iterate through all rotations of a Tetris piecee @lray is allocated the first time the
client callsget Pi eces() ; thus the piece is only built when it's actually used.

1.5 Rotation Tactics

You will need to devise an algorithm to perform the actuahtion. Get a nice sharp pencil. Draw a piece and its
rotation. Write the coordinates of both bodies. Think alibattransformation that converts from a body to the rotated
body. The transformation uses reflections around varioas.ax

1.6 Private Helpers

You will want private methods to compute the rotation of pie@nd to place all of the rotations onto a list. The
computation of the width, height, and skirt are needed wheking new pieces and when computing rotations, but
you should not have two copies of the code.

1.7 Generality

You should use a single Piece class to represent all of tferelift pieces, distinguished only by the different state in
their body arrays. The code should be general enough to déabady arrays of different sizes, so the constant
should not be sprinkled throughout your code.

1.8 TheTetri sPi ece Class

You should write the TetrisPiece class, which extends tistratt class Piece. The Piece class has three important
members that your TetrisPiece class will inherit. The fisshie methoghar sePoi nt s, which takes a String repre-
sentation of a piece’s body and returns an array of Pointotdjehich represent the same body. The second member
is the class variablpi eceSt ri ngs, which contains the String representations of the sevetlskad pieces used to
play Tetris. The last member is the instance variatabet , which refers to another Piece object. You'll usext to
chain Piece objects together, forming a circularly linkisti¢f Piece objects which includes all the various rotagion

of a piece.

In addition to the abstract methods declared in Piece, wiithll need to implement in TetrisPiece, you also
need to write the following methods: (1) a private consiouthat takes an array of Point objects and constructs a
TetrisPiece object with the body specified by those Poimtd,(2) a static methoget Pi eces which returns an array
of all the possible un-rotated Tetris Pieces. hee Pi eces method has a big job, constructing all the un-rotated
Piece objects (recall the eceSt ri ngs andpar sePoi nt s menber s) as well as setting up the circularly linked list
of rotations for each type of piece. For efficiency, tfee Pi eces method should do all this work only the first time it
is called. If it were called more than once, it should not doghme work all over again, but simply return the array of
previously constructed Pieces.

You may want to write helper methods to handle common repetiasks, such as generating all the rotations of
an arbitrary piece.

1.9 TheJPi eceTest Class

The last part of the Piece class is the test program that dxhwEthe pieces in a window, as shown in Figure 1. The
details of how your JPieceTest should draw your pieces afi@law/s (see Figure 2):

¢ Divide the componentinto 4 sections. Draw each distinttion in its own section, from left to right, stopping
when there are no more distinct rotations.

e Allow space for a Square that is 4 blocks4 blocks at the upper left of each section. Draw the block$ef t
piece starting at the bottom of thatd 4 Square. The Square won't fit the section exactly, since ¢loga
might be rectangular. This is so that the pieces don'’t rumésich other. See Figure 2.

e When drawing the blocks of the piece, leave a one-pixel bowdach is not filled in, around each block; this
will leave some space around each block. Each block shoutlidyen as a black square, except the blocks that
comprise the skirt, which should be drawn as yellow squdbeaw the blocks in yellow by bracketing it with
g. set Col or (Col or. yel | ow) ; <Draw block> g. set Col or (Col or. bl ack);

e At the bottom of the square, draw in red a string that indiedhe width and height of the block, suchvas3
h: 2.

We provide some skeleton code to get you started. You wildrnieecomplete thgpai nt Conponent and
dr awPi ece methods.

1.10 The PieceTest Milestone

With JPieceTest, you should be able to load and computeagitce rotations and see that your piece code is working
correctly.Reaching this milestone will complete Part 1.

Note that JPieceTest and TetrisPiece are essentially éamtigmt—either one should work with alternative imple-
mentations of the other. If you implement the interfacesexily and do not introduce unnecessary dependences
between these classes, we should be able to substituteferarree TetrisPiece for yours and vice versa and expect
everything to work.

& Piece Tester

w:d h:l

w:3 h:2 w2 h:3

w:3 h:2 w2 h:3

w2 h:3 w:3 h:2

=10] x|

H
H
w2

h:3

Figure 1: Screenshot of the program for testing the Teeisclass.

Draw pieces
inside the grid

Use up to 4 sections

Figure 2: Details about drawing each piece.

2 The Board
In your Tetris game, the TetrisBoard class does most of th& atd is the hardest part of the assignment:

e [t stores the current state of the Tetris board.

o It provides support for the common operations that a clieodate (the player) needs to build a GUI version of
the game. Namely, it adds pieces to the board, it lets piedegracefully downwards, and it detects various
conditions about the board.

e It performs all of the above quickly. The board implememtatshould be structured to do common operations
quickly.

2.1 The Board Abstraction

The board represents the state of a Tetris board. Its mosubieature is the grid, a 2D array of of booleans that
indicates whether a square is filled. The lower left corneoisition (0,0), with the x dimension increasing to the right
and the y dimension increasing upwards. Filled squaresegmesented by a true value in the grid. Thece()
method allows a piece to be added the grid, andtthear Rows() method clears filled rows in the grid and shifts the
relevant pieces downward.

Before describing the main Board methods, we first descrinay auxiliary structure.

2.2 Widths and Heights

The secondaryidths and heights structures make many operations efficient. As shown in Eig@rthew dt hs
array stores the number of squares that are filled in eachwhbigh allows thepl ace() method (described below) to
efficiently detect if the placement has caused a row to beddle@. Likewise, thehei ght s array stores the height
to which each column has been filled. The height will be thexaf the open spot which is just above the top filled
spot in that column. The heights array allows th@pHei ght () method to efficiently compute the location where a
piece will come to rest when dropped in a particular column.

3 TheTetri sBoard Class

You should write the TetrisBoard class, which implementsBbar d interface. In addition to the abstract methods
declared irBoar d, you should write a constructor which takes parametergfontidth and height of the Tetris board.

Widths Grid

WNPFRPOOOOO

-

Heights
12300

Figure 3: lllustration of thev dt hs andhei ght s arrays.

3.1 The Board Constructor

The constructor initializes an empty board. The board magflany size, although the standard Tetris board is 10
wide and 20 high. The client code may create a taller boah as 10x 24, to allow extra space at the top for the
pieces to fall into play (the provided player code does this)

InJava, a 2D array is really a 1D array of references to 1DyarrBhe expressiomew bool ean [wi dt h] [hei ght]
will allocate the whole grid.

3.2 int place(piece, X,Y)

Thepl ace() method takes a piece and an (x,y) coordinate, and sets tbe @io the grid with the origin—i.e., the
lower-left corner of the piece—at the (x,y) location of theabd. Theundo() method (described below) can remove
the most recently placed piece.

Thepl ace() method return®LACE K if the placement is successful. It retufPiISACE_ ROWNFI LLED for a suc-
cessful placement that also causes at least one row to bemomaetely filled.

Error cases: It's possible for the client to request a badesteent—one where part of the piece falls outside the
board or overlaps spots in the grid that are already filleces€hbad placements leave the board in a partially invalid
state. If part of the piece would fall out of bounds, this noetishould returfPLACE_OUT_BOUNDS. Otherwise, if the
piece overlaps spots that are already filled, this methodldhreturnPLACE_BAD. The client should be able to return
the board to its valid, pre-placement state with a singledation of thaundo() method.

3.3 cl ear Rows()

This method deletes each row that is completely filled, capisgems above to shift downward. There may be multiple
filled rows, and these rows might not be adjacent. New rowiseshin at the top of the board should be empty. This
method is a complicated coding problem. You should probataie a drawing to help you chart your strategy. Use
theJBoar dTest () (described below) to generate a few of the weird row-clepcases.

3.4 The Implementation

The slickest solution does everything in one pass—it copaeh row down to its ultimate destination. A hint for
implementing this as a single pass: Therow is the row you are copying down to. The row starts at the bottom
filled row and proceeds up one row at a time. Hiem row is the row you are copying from. TH&om row starts
one row above th&o row and skips over filled rows on its way up. The contents ofdihdt hs array needs to also be
shifted down. Be convinced that your solution works and disdt in your report.

By knowing the maximum filled height of all of the columns, yoan avoid needless copying of empty space at
the top of the board. Also, theei ght s array will need to be recomputed after each row clearing. idve value for
each column will be lower than the old value (not necessauy 1 lower), so just start at the old value and iterate
down to find the new height.

3.5 int dropHei ght(piece, x)

The Dr opHei ght () method computes the y value at which the origin (0,0) of agigitl come to rest if dropped

in the given column from an infinite height. This method sldouse thehei ght s array and the skirt of the piece to
compute the y value quickly—O(piece-width) time. This nuettassumes that the piece falls straight down; it does
not account for any movement of the piece during the drop.

4 The Undo Abstraction

The problem is made more difficult because the player (tlemttode) doesn’'t want to just add a sequence of pieces.
The player instead wants to experiment with different lmoet and rotations. To support this experimentation, the
board will implement a 1-deep undo facility. This facilityliadd significant complexity to the board implementation
but will make the client’s code simpler. This design illag&s an object oriented design principle: You will provide
functionality that meets the client needs while hiding thenplexity inside of the implementing class.

4.1 undo()

The board has eommitted state, which is either true or false. Suppose that the bsandginally in a committed state,
which we will refer to as theriginal state of the board. The client may perform a singlace() operation, which
will change the board state as usual and set the committed-stalse. The client may also perfornebear Rows ()
operation, which still leaves the board’s committed stat@lse. However, if the client performs ando() operation,
the board should return to its original state. If insteadhafundo() operation, the client performs tl@nmi t ()
operation, the current state of the board will be marked asctimmitted state of the board, which means that the
client will no longer be able to get back to the original bostate.

Basically, the board gives the player the ability to placéngle piece, perform onel ear Rows() operation, and
still get back to its original state with a 1-deep undo calitgbBy performing aconmi t () operation, the player can
perform additionapl ace() andcl ear Rows() operations.

Stated more formally, the rules are as follows:

e Initially, the board is in a committed state, andnmi tted = true.

e The client may perform a singld ace() operation, which setsonmi tted = f al se. The board must be in
the committed state before theace() method is called, so it is not possible to gallace() twice in a row.

e The client may perform a singtg ear Rows() operation, which also setonmi tted = fal se.

e The client may do armundo() operation, which returns the board to its original comrditstate and sets
commtted = true.

e Alternately, the client may do aonmi t () operation, which keeps the board in its current state angl set
conmitted = true.

e The client must either perform amdo() or conmi t () operation before performing anothgrace() opera-
tion.

e When in the committed statepnmi t () andundo() operations have no effect.
Thus, to make a piece appear to fall, the client will execotechat looks something like this:

pl ace the piece at the top of the board
<pause>

undo

pl ace the piece one row | ower

<pause>

undo

pl ace the piece one row | ower

detect that the piece has hit the bottom because place() returns PLACE _BAD
or PLACE_QUT_OF_BOUNDS

undo

pl ace the piece back at its last valid position

conmi t

add a new piece to the top of the board

4.2 undo() Implementation

Theundo() method is great for the client, but it complicates fhhece() andcl ear Rows() methods. Here is one
implementation strategy that uses the concept of backwepstiatctures.

Backups. For every board data structure, which we will refer tgoaisnary data structures, you should maintain a

backup data structure of the same size. Pphace() andcl ear Rows() methods can then copy the primary state

to the backup before making changes. Tihdo() method can then restore the primary state from the backup whe
necessary.

Backing up Widths and Heights. Forthewi dt hs andhei ght s arrays, the board has backup arrays calMicdt hs
and xHei ghts. Whenpl ace() is invoked, copy the current contents of the two arrays tar thackups. Use
System arraycopy(source, 0, dest, 0, |ength), which is a pretty efficient method.

Swap trick. For the undo operation, the obvious implementation wowlke ar r aycopy() to restore the old
state, but it's much more efficient to just swap pointers,alvhineans that the primary and backup data structures swap
roles with each undo. This scheme not only avoids the copyif means that we never have to allocate more than a
single primary and a single backup.

Backing up The Grid. The grid needs to also be backed up. The simplest strategyjist back up all of the
columns when thel ace() operation is performed. This is an acceptable strategyrisncase, no further backup is
required forcl ear Rows(), since thepl ace() method has already backed up the entire grid.

4.3 Sanity Check

The board has considerable internal redundancy betweegrithethewi dt hs, the hei ghts, andmaxHei ght.
Write asani t yCheck() method that verifies the internal consistency of the boamttires: Theni dt hs and
hei ght arrays should have the right numbers, andrtheHei ght should be correct. There ansany other checks
that you could perform (be sure to discuss these in your tepbiirow an exception if the board is in an inconsistent
state—thrownew Runt i meExcepti on("descri ption"). Call thesani t yCheck() method at the bottom of your
pl ace(), cl ear Rows() andundo() methods. A static boolean call®&EBUG should be used to control the use of
sani t yCheck() . When DEBUG = true the sanity check should be performed. Your project in with DEBUG =
false. Put the sanity check in early to help you test and dgbugcode.

There’s one bit of trickiness: Do not calani t yCheck() inthepl ace() method if the placement is bad, since
a bad placement represents a temporarily allowed incemsistate.

4.4 Performance

The Board class has two design goals. First, it should peos@tvices for the convenience of the client. Second, it
should run reasonably fast. With respect to speed, her&aitb primary considerations.

1. Accessorsget RowW dt h(), get Col utmHei ght (), get Hei ght () ,get Gri d(),dr opHei ght (), andget MaxHei ght ()
should all be made extremely fast, essentially constar.tim

2. Thepl ace(), cl ear Rows(), andundo() system can copy all of the arrays for backup and swap poifdgers
the undo operation. This is about as fast as you can make it.

45 The JBoardTest Milestone

Once you have the TetrisBoard class largely written, youussnthe JBoardTest class for testing. This “test mule”
(See Figure 4) is simply a GUI driver for the board interfaltéets you add pieces, move them around, place pieces,
and clear rows. To support debugging, it also displays ttiddn board state of thvé dt hs andhei ght s arrays. Use

the mule to try out basic test scenarios for your board. ItEmeasier to use the test mule than to try to observe and
debug your code while playing Tetris in real time. Note ttn&drop button will only work if there’s a straight-down
vertical path for the piece to fall from at an infinite heighitthere’s an obstructing overhang above the piece, drop
will not do anything—see the source code fioop in JBoar dTest .

& JBoardT est _|O] x|

Add
Add Random
Left
Right
Rotate
2
Down
1 Drop
: Clear Rows
5

Figure 4: Screenshot of the test mule.

Although you will not be handing in JBoardTest, feel free todify it with your own debugging code. For
example, you might createpa i nt Boar d() method that prints out all of the state of the board to stashdatput, as
this will allow you to examine log files that capture the stat¢he board over many time steps. Once you've tested
and debugged your TetrisBoard, you're ready to finish thesfTgame itself.

5 Tetris

The provided JTetris class is a functional Tetris playet tis®s your TetrisPiece and TetrisBoard classes to do the
work. Use the keyd, 5, 6 to move the piece, and use the Keo drop the piece. Thepeed slider adjusts the speed of
the pieces. You will create a subclass of JTetris that usestditial brain to play the pieces as they fall. Finally, you
will add the much needed adversary feature that allows y@anpthe game’s level of difficulty.

5.1 Milestone—Basic Tetris Playing

You need to get your TetrisBoard and TetrisPiece code seiffilsi debugged that JTetris can play Tetris. If it’s too fast
to debug, go back to the test mule. You should convince ydfubss the TetrisBoard and TetrisPiece code are free of
bugs before continuing with the next step.

5.2 Stress Test

The provided JBrainTetris gives you a simple-minded comppiayer with which to test your implementation.

Use the test mode (by giving theest parameter on the command line) to force JBrainTetris to hediked
sequence of 100 pieces. If your program is correct, the testenwith the unchanged LameBrain and the fixed
sequence of 100 pieces should lead to the exact board cafgushown below:

Figure 5: Screenshot of the test mule using LameBrain anfixhe test sequence.

This is an extremely rigorous test of your Board. Althougéréhare only 100 different boards displayed, one for
each piece, the brain has to explore thousands of boardzthagver displayed on the screen. Ifglee Col urmHei ght (),
cl ear Rows(), orundo() methods is incorrect even once, the entire configuratiorbtbeed could be drastically
changed.

If the stress test is not coming out correctly, you could ey tollowing:

e Look at the JPieceTest output to verify that the pieces anecbin every detail. (Hopefully you already did
this long ago!)

e Putin additional sanity checks: Check thatar Rows() changes the number of blocks by the correct number
(which should be a multiple of the board width), check thatithdo() method is restoring state exactly.

e Try to find out where your code deviates by trying shortersesfuences.

5.3 Understanding Tetris

Read thelBrai nTetris. java code to make sure you understand how it works, because yduevilvriting a
subclass of it. To help you get started, here are a few poiot§wnoting:

e tick() isthe bottleneck for moving the current piece.

e conput eNewPosi ti on() simply encapsulates the switching logic to determine the fxgy,rotation) that is
one move away from the current one.

10

e tick() detects that a piece has landed when it won’t go down any more.

¢ If the command line argumenest is present, the boolearest Mode is set to true, in which case the game
plays the same sequence of pieces every time. This modeésuggful for debugging.

As usual for inheritance, your derived class should reusewash inherited code as possible.

5.4 Building a Better Brain

Perhaps the most interesting part of this assignment isagledf creating a good Tetris brain. Your Brain is free to
use whatever methods and tactics it deems are appropriltegaas it abides by the Brain interface.

The Brain interface defines thest Move() method that computes what it thinks is the best availableenfiova
given piece and a given board.

The provided LameBrain class is a simple implementatioh@Brain interface. Take a looklaameBr ai n. j ava
to see how simple it is. Given a piece, it tries playing théedént rotations of that piece in all of the columns where
it will fit. For each play, it uses a simple evaluation funatioat eBoar d() , to decide how desirable the resulting
board is—blocks are bad, holes are bad. The brain usestral. dr opHei ght (), pl ace(), andundo() methods
to cycle through the different possible board configuragion

To create your brain, build a subclassLafiveBr ai n. Two tactics that the default brain doesn’t get right are (1)
it doesn’t avoid creating tall troughs that can only be fillgda Stick, and (2) it does not realize that things near the
top edge are more important than things that are buried ieldayers. Finally, a lot of the parameters can be tuned
to improve the brain. An ideal solution would follow a systgin approach to tuning these parameters (and an ideal
report would explain this systematic approach).

We will not place restrictions on the strategies that yoaifbemploys except that it must be more interesting and
more clever than LameBrain and similar approaches.

5.5 Hooking up the new Brain

In order to test your brain, you will need to write a JBetteiBiTetris class that extends JBrainTetris. Override what
you need to in order to get it to use your brain instead of LaragB In all other respects, you should preserve the
same behavior. The changes involved should be very minimal.

Your report should include an extensive discussion on ttategties that your brain employs. Is your brain better
than LameBrain? Does it eliminate more lines before dyirsmthameBrain or yourself? What are the strengths and
weaknesses of your brain’s strategy?

5.6 Adversary

For the last step, you will build an adversary that uses yaairBo increase the difficulty of the game. The adversary
attempts to make life more difficult for the player by pickithg “worst” possible next piece.
Create a subclass of JTetris called JAdversaryTetris. @idwy Tetris should incorporate the following changes.

e Modify createControlPanel to add a label that says, “Adwers, to add a slider with the range 0..100 and initial
value 0, and to add a status label that says, “ok”.

e Override thepi ckNext Pi ece() method. Generate a random number between 1 and 99. If themamagmber
is greater than the slider’s value, then the next piece shibellchosen randomly as usual. But if the random
value is less than the slider value, the adversary gets @lgmqick the next piece. When the piece is chosen at
random, theset Text () method should set the status to “ok;” otherwise, it shoutdrsestatus to+oksx".

e The adversary can be implemented with a little code that tngebrain to do the work. Loop through the array
of pieces. For each piece, ask the brain what it thinks therbese is. Remember the piece that yielded the
move with the worst score. When you've figured out which iswest piece—the piece for which the best
possible move is bad, then that's the piece the player gets!

11

5.7

Abstraction is key here. The Brain interface is so cleanithzn be used for both good and evil. Notice how
important the speed of the Board class is here. There ard @bawtations for each piece on a board, so the
adversary needs to be able to evaluate 25 = 175 boards in the tiny pause after a piece has landed and the
next piece is “randomly” chosen, so we need to be able to peoite placements very quickly.

Try your adversary on a friend. Leave the adversary at arei@®3d and the speed nice and slow. Turn the
adversary up to 100% and see if he or she complains about the lgaing “not fair.”

For fun, try the classic battle of good vs. evil and have ttarbplay the adversary.

Notes on Correctness
We should be able to run JPieceTest and it should look right.

Your board should have the correct internal structure, wifanctioningsani t yCheck() and with efficient
board manipulation methods as discussed earlier.

We should be able to play Tetris using the keyboard in the lusag, or we should be able to watch your
JBetterBrainTetris play.

We should be able to run your application wjtava JBrai nTetris test to perform the stress test.
We should be able to use the slider to activate the adversatyre in JAdversaryTetris.

We should be able to swap out parts of your code with parts ofode (pieces, board, etc) that implements the
same interface and have it function as expected. This sho@udfreebie if you stick to the interfaces.

Extra Fun

You can do any number of things to make your brain more igefit. For instance, your brain might “play it
safe” by choosing a placement that will allow for better ogipoities on the next turn regardless of the next
piece chosen. Such a brain might be more resistant to a madieidversary of lesser intelligence. Similarly, the
adversary can choose pieces to minimize opportunities uguons out.

There is a technique in artificial intelligence known as alfteta pruning to make searching the space of moves
more practical. With each turn, the player is attempting &ximize the objective function while the adversary
is attempting to minimize the objective function. Thus,dcdt-level search, the player tries to pick the move that
gives him the best board assuming the adversary then pieksdrst piece. The trick is that if you see a better
move than the best move from the worst piece you've seen sgdiaidon’t have to consider it, as the adversary
will not give you that opportunity. This lets you skip largeunks of the game tree, typically allowing you to
look twice as far ahead in the same time.

For more information on alpha-beta pruning, do a search medo office hours.

Tetris strategies might be different if the board had défertopological characteristics. Consider a Tetris board
where the left and right sides are “taped together” and wraprad. How does this change the strategy of your
brain? If you implement this, you will need to implement aaege board as well, since this is a pretty serious
change of game rules.

JTetris keeps “score” by counting the number of lines elatea. What if extra credit was given for eliminating
lines simultaneously? For example, suppose eliminatireglme was worth one, eliminating two was worth
four, eliminating three was worth nine, and eliminatingrfetorth a whopping sixteen. How does this change
your brain’s strategy? Maybe having long troughs that cdp be filled by a stick might not be so bad! Does
having an adversary change the situation? Note that LanteBrat smart enough to grasp this, as it doesn’t
try to build for future opportunities.

12

¢ If you want to challenge yourself, explore the notion of ganalgorithms, which uses biological evolution
as a metaphor for optimization. The basic idea is to defineaechespace as set of genes, which mate and
randomly mutate; an evaluation function favors the profiagaf the better genes, ie, those that do better on
the evaluation scores, which in your case will be the Tetitses. With these ideas, see if you can use genetic
algorithms to evolve a better brain.

If your karma project changes the rules of the game, you shioublement them separately from the required
components. We wouldn’t want your program to fail the sttessbecause you changed the rules and forgot about it.

7 Whatto Turn In

Include in your report a log of your time spent in the variogpects of this assignment—design, implementation,
and debugging—along with the time spent driving or workiegarately. In your report, pay special attention to
issues of decomposition, abstraction, and testing. Whatyithing, have you learned about testing in this part of the
assignment? What sort of testing is not possible with thawefesting implementation? What improvements could
(or did) you make to the JPieceTest class and JBoardTesfclas

As usual, all assignments are due at 5:00pm on the due date.

7.1 Partl

Report: Write a report in the usual format.

Source code: Turn in onlyTetri sPi ece.java andJPi eceTest . j ava. Other source files will be disre-
garded. Submit this &r oj 4a. zi p

7.2 Part2

Report: Write a report in the usual format.

Source code: TurninonlyTetri sBoard. j ava,JBetterBrai nTetris.java,JAdversaryTetris.java,
your brain code, and yodret r i sPi ece. j ava from Part 1. Other non-karma source files will be disregar&eib-
mit this asPr oj 4b. zi p

Acknowledgments. This assignment was originally produced by Nick Parlant8tahford University. It has been
modified by Matthew Alden and Walter Chang.

13

