
CS 314H Algorithms and Data Structures — Fall 2012 Programming Assignment #4
Tetris Due October 5/October 12, 2012

In this assignment you will work in pairs to implement Tetris, a game invented by Alexey Pazhitnov at the Moscow
Academy of Science. This assignment will emphasize the ideaof decomposing a large problem into smaller problems
that can be independently tested. This assignment will alsoask you to build portions of a very simple graphical user
interface, and it will also require you to write portions of code that are very efficient. The first part of the assignment
builds the TetrisPiece class and will be dueOctober 5. The second part builds the TetrisBoard class, along with some
other open-ended goodies, and will be dueOctober 12.The first deadline represents considerably less than half ofthe
work, so we encourage you to finish Part 1 as soon as possible sothat you can give yourself more than a week for Part
2.

The game of Tetris consists of a 2D grid and a stream of various-shaped pieces that fall, one at a time, onto the
grid. The goal of the game is to rotate and move the pieces, so that as they fall, they are tightly packed and form entire
rows. The rest of the game is best described by playing it (be sure to play the traditional version of the game, in which
blocks can only move down by a distance equal to the height of the rows that are cleared below them). If you have
never played Tetris before, numerous versions can be found online.

1 The Pieces

There are seven pieces in standard Tetris. As shown below, each piece consists of four blocks.

The SquareThe T The Stick The L The Dog

A piece can be rotated counter-clockwise 90 degrees to form another piece. Of course, enough rotations get you back
to the original piece—for example, rotating a Dog twice brings you back to the original state. Essentially, each Tetris
piece belongs to a family of between one and four distinct rotations, and your program should represent the distinct
rotations as distinct objects. The Square has one member, the Dogs have two, and the L’s have four. For example, the
following figure shows the four rotations of the left-handedL, which will be represented by 4 Piece objects.

1.1 The Body

A piece is represented by the coordinates of its blocks, which are known as thebody of the piece. Each piece has its
own coordinate system with its (0,0) origin in the lower lefthand corner of the rectangle that encloses the body. The
coordinates of blocks in the body are relative to that piece’s origin. Thus, the coordinates of the four points of the
Square piece are as shown below:

1



(0,0) <= the lower left-hand block
(0,1) <= the upper left-hand block
(1,0) <= the lower right-hand block
(1,1) <= the upper right-hand block

Notice that not all pieces will have a block at (0,0). For example, the body of the following rotation of the Right
Dog has the body as shown below:

[(0,1), (0,2), (1,0), (1,1)]

A piece is completely defined by its body—all of its other characteristics, such as its height and width, can be
computed from the body. The Right Dog above has a width of 2 anda height of 3.

1.2 The Skirt

You will find it useful to maintain theskirt for each piece, which is the lowest y extent of each x coordinate in the
piece. The skirt will be represented by an array of integers,which is as long as the piece is wide. The skirt for the
Dog above is (1,0). We will assume that pieces do not have holes in them—that is, for every x position in the piece’s
coordinate system, there is at least one block in the piece for that x.

1.3 Rotations

The Piece class needs to provide a way for clients to access the various piece rotations. The client can ask each piece
for a reference to thenext rotation, which yields a reference to a Piece object that represents the next counter-clockwise
rotation. Note this immutable paradigm—rather than provide arotate() method that changes the state of the Piece,
the Piece objects are read-only, and the client can iterate over different instances of them. The String class is another
example of this immutable paradigm.

1.4 Rotation Strategy

The overall piece rotation strategy uses a simple, static array that contains the first rotation for each of the 7 pieces.
Each of the first pieces is the first node in a small circularly linked list of rotations of that piece. The client uses the
nextRotation() method to iterate through all rotations of a Tetris piece. The array is allocated the first time the
client callsgetPieces(); thus the piece is only built when it’s actually used.

1.5 Rotation Tactics

You will need to devise an algorithm to perform the actual rotation. Get a nice sharp pencil. Draw a piece and its
rotation. Write the coordinates of both bodies. Think aboutthe transformation that converts from a body to the rotated
body. The transformation uses reflections around various axes.

1.6 Private Helpers

You will want private methods to compute the rotation of pieces and to place all of the rotations onto a list. The
computation of the width, height, and skirt are needed when making new pieces and when computing rotations, but
you should not have two copies of the code.

2



1.7 Generality

You should use a single Piece class to represent all of the different pieces, distinguished only by the different state in
their body arrays. The code should be general enough to deal with body arrays of different sizes, so the constant4

should not be sprinkled throughout your code.

1.8 TheTetrisPiece Class

You should write the TetrisPiece class, which extends the abstract class Piece. The Piece class has three important
members that your TetrisPiece class will inherit. The first is the methodparsePoints, which takes a String repre-
sentation of a piece’s body and returns an array of Point objects which represent the same body. The second member
is the class variablepieceStrings, which contains the String representations of the seven kinds of pieces used to
play Tetris. The last member is the instance variablenext, which refers to another Piece object. You’ll usenext to
chain Piece objects together, forming a circularly linked list of Piece objects which includes all the various rotations
of a piece.

In addition to the abstract methods declared in Piece, whichyou’ll need to implement in TetrisPiece, you also
need to write the following methods: (1) a private constructor that takes an array of Point objects and constructs a
TetrisPiece object with the body specified by those Points, and (2) a static methodgetPieces which returns an array
of all the possible un-rotated Tetris Pieces. ThegetPieces method has a big job, constructing all the un-rotated
Piece objects (recall thepieceStrings andparsePoints members) as well as setting up the circularly linked list
of rotations for each type of piece. For efficiency, thegetPieces method should do all this work only the first time it
is called. If it were called more than once, it should not do the same work all over again, but simply return the array of
previously constructed Pieces.

You may want to write helper methods to handle common repetitive tasks, such as generating all the rotations of
an arbitrary piece.

1.9 TheJPieceTest Class

The last part of the Piece class is the test program that drawsall of the pieces in a window, as shown in Figure 1. The
details of how your JPieceTest should draw your pieces are asfollows (see Figure 2):

• Divide the component into 4 sections. Draw each distinct rotation in its own section, from left to right, stopping
when there are no more distinct rotations.

• Allow space for a Square that is 4 blocks× 4 blocks at the upper left of each section. Draw the blocks of the
piece starting at the bottom of that 4× 4 Square. The Square won’t fit the section exactly, since the section
might be rectangular. This is so that the pieces don’t run into each other. See Figure 2.

• When drawing the blocks of the piece, leave a one-pixel border, which is not filled in, around each block; this
will leave some space around each block. Each block should bedrawn as a black square, except the blocks that
comprise the skirt, which should be drawn as yellow squares.Draw the blocks in yellow by bracketing it with
g.setColor(Color.yellow);<Draw block> g.setColor(Color.black);

• At the bottom of the square, draw in red a string that indicates the width and height of the block, such asw:3

h:2.

We provide some skeleton code to get you started. You will need to complete thepaintComponent and
drawPiece methods.

1.10 The PieceTest Milestone

With JPieceTest, you should be able to load and compute all the piece rotations and see that your piece code is working
correctly.Reaching this milestone will complete Part 1.

Note that JPieceTest and TetrisPiece are essentially independent—either one should work with alternative imple-
mentations of the other. If you implement the interfaces correctly and do not introduce unnecessary dependences
between these classes, we should be able to substitute our reference TetrisPiece for yours and vice versa and expect
everything to work.

3



Figure 1: Screenshot of the program for testing the TetrisPiece class.

4



inside the grid
Draw pieces

Use up to 4 sections

Figure 2: Details about drawing each piece.

2 The Board

In your Tetris game, the TetrisBoard class does most of the work and is the hardest part of the assignment:

• It stores the current state of the Tetris board.

• It provides support for the common operations that a client module (the player) needs to build a GUI version of
the game. Namely, it adds pieces to the board, it lets pieces fall gracefully downwards, and it detects various
conditions about the board.

• It performs all of the above quickly. The board implementation should be structured to do common operations
quickly.

2.1 The Board Abstraction

The board represents the state of a Tetris board. Its most obvious feature is the grid, a 2D array of of booleans that
indicates whether a square is filled. The lower left corner isposition (0,0), with the x dimension increasing to the right
and the y dimension increasing upwards. Filled squares are represented by a true value in the grid. Theplace()

method allows a piece to be added the grid, and theclearRows() method clears filled rows in the grid and shifts the
relevant pieces downward.

Before describing the main Board methods, we first describe ahandy auxiliary structure.

2.2 Widths and Heights

The secondarywidths andheights structures make many operations efficient. As shown in Figure 3, thewidths
array stores the number of squares that are filled in each row,which allows theplace() method (described below) to
efficiently detect if the placement has caused a row to becomefilled. Likewise, theheights array stores the height
to which each column has been filled. The height will be the index of the open spot which is just above the top filled
spot in that column. The heights array allows thedropHeight() method to efficiently compute the location where a
piece will come to rest when dropped in a particular column.

3 TheTetrisBoard Class

You should write the TetrisBoard class, which implements the Board interface. In addition to the abstract methods
declared inBoard, you should write a constructor which takes parameters for the width and height of the Tetris board.

5



1 2 3 0 0

0
0
0
0
0
1
2
3

Grid

Heights

Widths

Figure 3: Illustration of thewidths andheights arrays.

3.1 The Board Constructor

The constructor initializes an empty board. The board may beof any size, although the standard Tetris board is 10
wide and 20 high. The client code may create a taller board, such as 10× 24, to allow extra space at the top for the
pieces to fall into play (the provided player code does this).

In Java, a 2D array is really a 1D array of references to 1D arrays. The expressionnew boolean [width][height]

will allocate the whole grid.

3.2 int place(piece, x,y)

Theplace() method takes a piece and an (x,y) coordinate, and sets the piece onto the grid with the origin—i.e., the
lower-left corner of the piece—at the (x,y) location of the board. Theundo() method (described below) can remove
the most recently placed piece.

Theplace() method returnsPLACE OK if the placement is successful. It returnsPLACE ROW FILLED for a suc-
cessful placement that also causes at least one row to becomecompletely filled.

Error cases: It’s possible for the client to request a bad placement—one where part of the piece falls outside the
board or overlaps spots in the grid that are already filled. These bad placements leave the board in a partially invalid
state. If part of the piece would fall out of bounds, this method should returnPLACE OUT BOUNDS. Otherwise, if the
piece overlaps spots that are already filled, this method should returnPLACE BAD. The client should be able to return
the board to its valid, pre-placement state with a single invocation of theundo() method.

3.3 clearRows()

This method deletes each row that is completely filled, causing items above to shift downward. There may be multiple
filled rows, and these rows might not be adjacent. New rows shifted in at the top of the board should be empty. This
method is a complicated coding problem. You should probablymake a drawing to help you chart your strategy. Use
theJBoardTest() (described below) to generate a few of the weird row-clearing cases.

3.4 The Implementation

The slickest solution does everything in one pass—it copieseach row down to its ultimate destination. A hint for
implementing this as a single pass: TheTo row is the row you are copying down to. TheTo row starts at the bottom
filled row and proceeds up one row at a time. TheFrom row is the row you are copying from. TheFrom row starts
one row above theTo row and skips over filled rows on its way up. The contents of thewidths array needs to also be
shifted down. Be convinced that your solution works and describe it in your report.

By knowing the maximum filled height of all of the columns, youcan avoid needless copying of empty space at
the top of the board. Also, theheights array will need to be recomputed after each row clearing. Thenew value for
each column will be lower than the old value (not necessarilyjust 1 lower), so just start at the old value and iterate
down to find the new height.

6



3.5 int dropHeight(piece, x)

TheDropHeight() method computes the y value at which the origin (0,0) of a piece will come to rest if dropped
in the given column from an infinite height. This method should use theheights array and the skirt of the piece to
compute the y value quickly—O(piece-width) time. This method assumes that the piece falls straight down; it does
not account for any movement of the piece during the drop.

4 The Undo Abstraction

The problem is made more difficult because the player (the client code) doesn’t want to just add a sequence of pieces.
The player instead wants to experiment with different locations and rotations. To support this experimentation, the
board will implement a 1-deep undo facility. This facility will add significant complexity to the board implementation
but will make the client’s code simpler. This design illustrates an object oriented design principle: You will provide
functionality that meets the client needs while hiding the complexity inside of the implementing class.

4.1 undo()

The board has acommitted state, which is either true or false. Suppose that the board is originally in a committed state,
which we will refer to as theoriginal state of the board. The client may perform a singleplace() operation, which
will change the board state as usual and set the committed state = false. The client may also perform aclearRows()
operation, which still leaves the board’s committed state =false. However, if the client performs anundo() operation,
the board should return to its original state. If instead of theundo() operation, the client performs thecommit()
operation, the current state of the board will be marked as the committed state of the board, which means that the
client will no longer be able to get back to the original boardstate.

Basically, the board gives the player the ability to place a single piece, perform oneclearRows() operation, and
still get back to its original state with a 1-deep undo capability. By performing acommit() operation, the player can
perform additionalplace() andclearRows() operations.

Stated more formally, the rules are as follows:

• Initially, the board is in a committed state, andcommitted = true.

• The client may perform a singleplace() operation, which setscommitted = false. The board must be in
the committed state before theplace() method is called, so it is not possible to callplace() twice in a row.

• The client may perform a singleclearRows() operation, which also setscommitted = false.

• The client may do anundo() operation, which returns the board to its original committed state and sets
committed = true.

• Alternately, the client may do acommit() operation, which keeps the board in its current state and sets
committed = true.

• The client must either perform anundo() or commit() operation before performing anotherplace() opera-
tion.

• When in the committed state,commit() andundo() operations have no effect.

Thus, to make a piece appear to fall, the client will execute code that looks something like this:

place the piece at the top of the board
<pause>
undo
place the piece one row lower
<pause>
undo
place the piece one row lower
. . .

7



detect that the piece has hit the bottom because place() returns PLACE_BAD
or PLACE_OUT_OF_BOUNDS
undo
place the piece back at its last valid position
commit
add a new piece to the top of the board
. . .

4.2 undo() Implementation

Theundo() method is great for the client, but it complicates theplace() andclearRows() methods. Here is one
implementation strategy that uses the concept of backup data structures.

Backups. For every board data structure, which we will refer to asprimary data structures, you should maintain a
backup data structure of the same size. Theplace() andclearRows() methods can then copy the primary state
to the backup before making changes. Theundo() method can then restore the primary state from the backup when
necessary.

Backing up Widths and Heights. For thewidths andheights arrays, the board has backup arrays calledxWidths

and xHeights. Whenplace() is invoked, copy the current contents of the two arrays to their backups. Use
System.arraycopy(source, 0, dest, 0, length), which is a pretty efficient method.

Swap trick. For the undo operation, the obvious implementation would invokearraycopy() to restore the old
state, but it’s much more efficient to just swap pointers, which means that the primary and backup data structures swap
roles with each undo. This scheme not only avoids the copy, but it means that we never have to allocate more than a
single primary and a single backup.

Backing up The Grid. The grid needs to also be backed up. The simplest strategy is to just back up all of the
columns when theplace() operation is performed. This is an acceptable strategy. In this case, no further backup is
required forclearRows(), since theplace() method has already backed up the entire grid.

4.3 Sanity Check

The board has considerable internal redundancy between thegrid, thewidths, the heights, andmaxHeight.
Write a sanityCheck() method that verifies the internal consistency of the board structures: Thewidths and
height arrays should have the right numbers, and themaxHeight should be correct. There aremany other checks
that you could perform (be sure to discuss these in your report). Throw an exception if the board is in an inconsistent
state—thrownew RuntimeException("description"). Call thesanityCheck()method at the bottom of your
place(), clearRows() andundo() methods. A static boolean calledDEBUG should be used to control the use of
sanityCheck(). When DEBUG = true the sanity check should be performed. Turnyour project in with DEBUG =
false. Put the sanity check in early to help you test and debugyour code.

There’s one bit of trickiness: Do not callsanityCheck() in theplace() method if the placement is bad, since
a bad placement represents a temporarily allowed inconsistent state.

4.4 Performance

The Board class has two design goals. First, it should provide services for the convenience of the client. Second, it
should run reasonably fast. With respect to speed, here are the two primary considerations.

1. Accessors:getRowWidth(),getColumnHeight(),getHeight(),getGrid(),dropHeight(), andgetMaxHeight()
should all be made extremely fast, essentially constant time.

2. Theplace(), clearRows(), andundo() system can copy all of the arrays for backup and swap pointersfor
the undo operation. This is about as fast as you can make it.

8



4.5 The JBoardTest Milestone

Once you have the TetrisBoard class largely written, you canuse the JBoardTest class for testing. This “test mule”
(See Figure 4) is simply a GUI driver for the board interface.It lets you add pieces, move them around, place pieces,
and clear rows. To support debugging, it also displays the hidden board state of thewidths andheights arrays. Use
the mule to try out basic test scenarios for your board. It’s much easier to use the test mule than to try to observe and
debug your code while playing Tetris in real time. Note that thedrop button will only work if there’s a straight-down
vertical path for the piece to fall from at an infinite height.If there’s an obstructing overhang above the piece, drop
will not do anything—see the source code fordrop in JBoardTest.

Figure 4: Screenshot of the test mule.

Although you will not be handing in JBoardTest, feel free to modify it with your own debugging code. For
example, you might create aprintBoard() method that prints out all of the state of the board to standard output, as
this will allow you to examine log files that capture the stateof the board over many time steps. Once you’ve tested
and debugged your TetrisBoard, you’re ready to finish the Tetris game itself.

5 Tetris

The provided JTetris class is a functional Tetris player that uses your TetrisPiece and TetrisBoard classes to do the
work. Use the keys4, 5, 6 to move the piece, and use the key0 to drop the piece. Thespeed slider adjusts the speed of
the pieces. You will create a subclass of JTetris that uses anartificial brain to play the pieces as they fall. Finally, you
will add the much needed adversary feature that allows you tovary the game’s level of difficulty.

9



5.1 Milestone—Basic Tetris Playing

You need to get your TetrisBoard and TetrisPiece code sufficiently debugged that JTetris can play Tetris. If it’s too fast
to debug, go back to the test mule. You should convince yourself that the TetrisBoard and TetrisPiece code are free of
bugs before continuing with the next step.

5.2 Stress Test

The provided JBrainTetris gives you a simple-minded computer player with which to test your implementation.
Use the test mode (by giving thetest parameter on the command line) to force JBrainTetris to use the fixed

sequence of 100 pieces. If your program is correct, the test mode with the unchanged LameBrain and the fixed
sequence of 100 pieces should lead to the exact board configuration shown below:

Figure 5: Screenshot of the test mule using LameBrain and thefixed test sequence.

This is an extremely rigorous test of your Board. Although there are only 100 different boards displayed, one for
each piece, the brain has to explore thousands of boards thatare never displayed on the screen. If thegetColumnHeight(),
clearRows(), or undo() methods is incorrect even once, the entire configuration theboard could be drastically
changed.

If the stress test is not coming out correctly, you could try the following:

• Look at the JPieceTest output to verify that the pieces are correct in every detail. (Hopefully you already did
this long ago!)

• Put in additional sanity checks: Check thatclearRows() changes the number of blocks by the correct number
(which should be a multiple of the board width), check that theundo() method is restoring state exactly.

• Try to find out where your code deviates by trying shorter testsequences.

5.3 Understanding Tetris

Read theJBrainTetris.java code to make sure you understand how it works, because you will be writing a
subclass of it. To help you get started, here are a few points worth noting:

• tick() is the bottleneck for moving the current piece.

• computeNewPosition() simply encapsulates the switching logic to determine the new (x,y,rotation) that is
one move away from the current one.

10



• tick() detects that a piece has landed when it won’t go down any more.

• If the command line argumenttest is present, the booleantestMode is set to true, in which case the game
plays the same sequence of pieces every time. This mode is quite useful for debugging.

As usual for inheritance, your derived class should reuse asmuch inherited code as possible.

5.4 Building a Better Brain

Perhaps the most interesting part of this assignment is the task of creating a good Tetris brain. Your Brain is free to
use whatever methods and tactics it deems are appropriate aslong as it abides by the Brain interface.

The Brain interface defines thebestMove() method that computes what it thinks is the best available move for a
given piece and a given board.

The provided LameBrain class is a simple implementation of the Brain interface. Take a look atLameBrain.java
to see how simple it is. Given a piece, it tries playing the different rotations of that piece in all of the columns where
it will fit. For each play, it uses a simple evaluation function, rateBoard(), to decide how desirable the resulting
board is—blocks are bad, holes are bad. The brain uses theBoard.dropHeight(), place(), andundo() methods
to cycle through the different possible board configurations.

To create your brain, build a subclass ofLameBrain. Two tactics that the default brain doesn’t get right are (1)
it doesn’t avoid creating tall troughs that can only be filledby a Stick, and (2) it does not realize that things near the
top edge are more important than things that are buried in lower layers. Finally, a lot of the parameters can be tuned
to improve the brain. An ideal solution would follow a systematic approach to tuning these parameters (and an ideal
report would explain this systematic approach).

We will not place restrictions on the strategies that your brain employs except that it must be more interesting and
more clever than LameBrain and similar approaches.

5.5 Hooking up the new Brain

In order to test your brain, you will need to write a JBetterBrainTetris class that extends JBrainTetris. Override what
you need to in order to get it to use your brain instead of LameBrain. In all other respects, you should preserve the
same behavior. The changes involved should be very minimal.

Your report should include an extensive discussion on the strategies that your brain employs. Is your brain better
than LameBrain? Does it eliminate more lines before dying than LameBrain or yourself? What are the strengths and
weaknesses of your brain’s strategy?

5.6 Adversary

For the last step, you will build an adversary that uses your Brain to increase the difficulty of the game. The adversary
attempts to make life more difficult for the player by pickingthe “worst” possible next piece.

Create a subclass of JTetris called JAdversaryTetris. JAdversaryTetris should incorporate the following changes.

• Modify createControlPanel to add a label that says, “Adversary:”, to add a slider with the range 0..100 and initial
value 0, and to add a status label that says, “ok”.

• Override thepickNextPiece() method. Generate a random number between 1 and 99. If the random number
is greater than the slider’s value, then the next piece should be chosen randomly as usual. But if the random
value is less than the slider value, the adversary gets to cruelly pick the next piece. When the piece is chosen at
random, thesetText() method should set the status to “ok;” otherwise, it should set the status to “∗ok∗”.

• The adversary can be implemented with a little code that usesthe brain to do the work. Loop through the array
of pieces. For each piece, ask the brain what it thinks the best move is. Remember the piece that yielded the
move with the worst score. When you’ve figured out which is theworst piece—the piece for which the best
possible move is bad, then that’s the piece the player gets!

11



• Abstraction is key here. The Brain interface is so clean thatit can be used for both good and evil. Notice how
important the speed of the Board class is here. There are about 25 rotations for each piece on a board, so the
adversary needs to be able to evaluate7 × 25 = 175 boards in the tiny pause after a piece has landed and the
next piece is “randomly” chosen, so we need to be able to process the placements very quickly.

• Try your adversary on a friend. Leave the adversary at around40% and the speed nice and slow. Turn the
adversary up to 100% and see if he or she complains about the game being “not fair.”

• For fun, try the classic battle of good vs. evil and have the brain play the adversary.

5.7 Notes on Correctness

• We should be able to run JPieceTest and it should look right.

• Your board should have the correct internal structure, witha functioningsanityCheck() and with efficient
board manipulation methods as discussed earlier.

• We should be able to play Tetris using the keyboard in the usual way, or we should be able to watch your
JBetterBrainTetris play.

• We should be able to run your application withjava JBrainTetris test to perform the stress test.

• We should be able to use the slider to activate the adversary feature in JAdversaryTetris.

• We should be able to swap out parts of your code with parts of our code (pieces, board, etc) that implements the
same interface and have it function as expected. This shouldbe a freebie if you stick to the interfaces.

6 Extra Fun

• You can do any number of things to make your brain more intelligent. For instance, your brain might “play it
safe” by choosing a placement that will allow for better opportunities on the next turn regardless of the next
piece chosen. Such a brain might be more resistant to a malicious adversary of lesser intelligence. Similarly, the
adversary can choose pieces to minimize opportunities up ton turns out.

There is a technique in artificial intelligence known as alpha-beta pruning to make searching the space of moves
more practical. With each turn, the player is attempting to maximize the objective function while the adversary
is attempting to minimize the objective function. Thus, fora 1-level search, the player tries to pick the move that
gives him the best board assuming the adversary then picks the worst piece. The trick is that if you see a better
move than the best move from the worst piece you’ve seen so far, you don’t have to consider it, as the adversary
will not give you that opportunity. This lets you skip large chunks of the game tree, typically allowing you to
look twice as far ahead in the same time.

For more information on alpha-beta pruning, do a search or come to office hours.

• Tetris strategies might be different if the board had different topological characteristics. Consider a Tetris board
where the left and right sides are “taped together” and wrap around. How does this change the strategy of your
brain? If you implement this, you will need to implement a separate board as well, since this is a pretty serious
change of game rules.

• JTetris keeps “score” by counting the number of lines eliminated. What if extra credit was given for eliminating
lines simultaneously? For example, suppose eliminating one line was worth one, eliminating two was worth
four, eliminating three was worth nine, and eliminating four worth a whopping sixteen. How does this change
your brain’s strategy? Maybe having long troughs that can only be filled by a stick might not be so bad! Does
having an adversary change the situation? Note that LameBrain isn’t smart enough to grasp this, as it doesn’t
try to build for future opportunities.

12



• If you want to challenge yourself, explore the notion of genetic algorithms, which uses biological evolution
as a metaphor for optimization. The basic idea is to define a search space as set of genes, which mate and
randomly mutate; an evaluation function favors the propagation of the better genes, ie, those that do better on
the evaluation scores, which in your case will be the Tetris scores. With these ideas, see if you can use genetic
algorithms to evolve a better brain.

If your karma project changes the rules of the game, you should implement them separately from the required
components. We wouldn’t want your program to fail the stresstest because you changed the rules and forgot about it.

7 What to Turn In

Include in your report a log of your time spent in the various aspects of this assignment—design, implementation,
and debugging—along with the time spent driving or working separately. In your report, pay special attention to
issues of decomposition, abstraction, and testing. What, if anything, have you learned about testing in this part of the
assignment? What sort of testing is not possible with the default testing implementation? What improvements could
(or did) you make to the JPieceTest class and JBoardTest class?

As usual, all assignments are due at 5:00pm on the due date.

7.1 Part 1

Report: Write a report in the usual format.

Source code: Turn in only TetrisPiece.java andJPieceTest.java. Other source files will be disre-
garded. Submit this asProj4a.zip

7.2 Part 2

Report: Write a report in the usual format.

Source code: Turn in onlyTetrisBoard.java,JBetterBrainTetris.java,JAdversaryTetris.java,
your brain code, and yourTetrisPiece.java from Part 1. Other non-karma source files will be disregarded. Sub-
mit this asProj4b.zip

Acknowledgments. This assignment was originally produced by Nick Parlante ofStanford University. It has been
modified by Matthew Alden and Walter Chang.

13


