CS 314H Algorithms and Data Structures — Fall 2012 Programmig Assignment #5
Boggle Due October 28/31/November 2, 2012

In this assignment, you will work in pairs to implement thargaof Bogglé ™, which will require you to (1)
design and implement a number of recursive algorithms anthii2k about various implementation strategies for the
Boggle dictionary. In addition, you will conduct Peer Reavief other teams’ assignments; in particular, you will try to
break their code, and you will write a report about your testfforts. There are three deadlines for this assignment,
and the first two aretrict, so we encourage you to start early.

Program and Report Due 5:00pm Sunday October 28
Peer Reviews Due 5:00pm Wednesday October 31
Testing Report and Test Code Dlis:00pm Friday November 2

1 The Game of Boggle

Boggle is a word game played with sixteen cubes, where edehadieach cube has one letter of the alphabet. The
cubes are randomly arranged on a 4 grid, with one legal configuration shown below:

E|E
AL
HIN
QT

The object of the game is to identify—in this grid of lettergserds that satisfy the following conditions:

— |0 MO
<01 >

e The word must be at least four letters long.

e The path formed by the sequence of letters in the word musbivescted horizontally, vertically, or diagonally.

e For a given word, each cube may only be used once.

For example, the above board contains the the word PEACEhwhiegally connected as shown below.

==
AL
HIN
QT

The board does not contain the word PLACE, because the L an& thre not connected, and the board does not
contain the word POPE, because the same P cannot be usecharomnte for a given word.

Points are scored based on the length of the word. Four-letteds are worth 1 point, five-letter words are worth
2 points, etc.

—|Uu|'[|(b

A
P
0
Y

2 Your Boggle Game

You will create a Boggle game which randomly sets up a boawlr game will then allow a human to identify a
list of words in the board, which your program will verify dégst some dictionary and for which your program will
compute a score. When the human can think of no more words pyogram will create a list of legal words that the
human did not identify.

For example, if the human identified the following words floe tbove board:

lean pace bent peel pent clan clean lent

Your program would verify that each of these words was legdlwould assign a score of 9 for the seven four-letter
words and one five-letter word. Your program would then usitiothary, whose words we will provide, to identify
the following words (yeah, we didn’t know that hant and bleete words, either; neither does the Unix spellchecker):

elan celeb cape capelan capo cent cento alee
alec anele leant lane leap lento peace pele
penal hale hant neap blae blah blent becap
benthal bott open thae than thane toecap tope
topee toby

For this wondrous list of words, your program would obtaincare of 56, thoroughly embarrassing the feeble
human player.

2.1 Initializing the Game

The game uses sixteen cubes, each with a particular seterElen it. These letters have been chosen so that common
letters are more likely to appear, and so that there is a gawdfeonsonants and vowels. You should initialize your
cubes from the filegubes. t xt , which contains the following data:

LRYTTE
VTHRVE
EGHWKE
SEOTI S
ANAEEG
| DSYTT
QATTOW
Mral CU
AFPKFS
XLDER

HCPOAS
ENSI EU
YLDEVR
ZNRNHL
NM QHU
OBBAQJ

Each line represents the six characters that will appean@faces of a single cube. To initialize your game, you
should read this file and store the data in a data structutedpeesents the 16 cubes.

For each game, your program should randomly shuffle eachanudbeandomly distribute the cubes amongst the 4
x 4 grid. There are many ways to do this. You could lay down tHeesiwand start swapping them around, or you could
pick cubes randomly and lay them down one at a time. Use anlyadéhat produces a good random permutation.

Your program will need to implement a simple dictionary toah read a large number of words (hundreds of
thousands of words) and store it in some judicious manneg. dittionary file is calledwr ds. t xt , and it contains
one word per line, with the words in ascending lexicograjoindzr.

Finally, you will need to create some way of displaying thetestof the board, the words guessed by the players,
and the players’ scores. For those of you unfamiliar with §Uhis can be a text-based interface if you wish.

Once your initialization is complete, you're ready to implent two types of recursive search, one for the human
player and one for the computer. Each search uses a distmetaf recursion. For the human, you search for a
specific word and stop as soon as it's found in the dictionalnyle for the computer, you are searching for all possible
words. You might be tempted to integrate the two types ofn®on into a single routine, but this will be unnecessarily
complex, so we advise you to resist this temptation.

2.2 User Interface (Ul)

To actually play Boggle, you will need a user interface. Yoaynmplement the user interface however you like, as
long as it meets the conditions outlined in this section.dfi yant, you can create a graphical user interface, but a
text-based interface is equally acceptable (and probatdigeto write).

When the game starts, the Ul should create and display a mambt=d Boggle board. It should then accept a
word from the human as input, check the word for validity, #reh compute a score for the word. If the word is valid,
the program should visually indicate where on the board thlwas found. A graphical Ul might change the colors
of the letters, while a text Ul might change upper/lower c&&nting a list of coordinates is not very helpful.

If the word is too short, not on the board, not a legal word salieady used by the player, your program should
emit a suitable error message and prompt for another worel platyer should not get credit for bad words.

After the human indicates that she is done, the computeeptgsts to select all valid words that were not identified
by the human. The program should then display the respestimees. After every game, the Ul should prompt the
user for another game and act accordingly.

Implement the game iBoggl e. j ava. We should be able to run the game wijitliva Boggl e.

2.3 The BoggleGame Interface

Everything that manages the mechanics of the game shouldrtaiced in a class that implements the BoggleGame
interface. This interface provides all the necessary fonstfor implementing a basic generalized game of Boggle.
The use of this interface completely separates the codertmages the game from the code that implements the U.

public interface Boggl eGane {
public static final int SEARCH BQOARD = 0;
public static final int SEARCH DICT = 1;
public static final int SEARCH DEFAULT = SEARCH BOARD;
voi d newGane(int size, int nunPlayers,
String cubeFile, BoggleDictionary dict);
char [][] getBoard();

i nt addWord(String word, int player);
int []J[] getLastAddedWord();

voi d set Gane(char [][] board);

String [] getAllWrds();

voi d set SearchTactic(int tactic);

voi d pl ayer Done(i nt pl ayer);

int [] get Scores();

Implement your game engine @&aneManager . j ava. For additional details, see BoggleGame.java.

2.4 Dictionary Interface

To check for legal words, your program will need to searchdicgonary, which you will implement. The methods
in the Dictionary interface, shown below, allow you to ceeatnew dictionary and to insert words into it as an entire
collection stored in a single file. The interface also spesifnethods to determine whether a string is found in the
dictionary or whether it is a prefix of a word in the dictionafnally, the interface specifies an internal iterator: & ca
toresetlterator() will setthe iterator to the beginning of the dictionary, aubsequent calls toext Wor d()

will return individual words in the dictionary.

public interface BoggleDictionary {
voi d | oadDi ctionary(String fil enane);
bool ean isPrefix(String prefix);
bool ean contains(String word);
voi d resetlterator();
String nextWrd();

There are interesting design issues associated with tkierhcy. You should strive to create the simplest possible
dictionary that is reasonably efficient. Your lookup opinas should také(logn) time or better. Be sure to justify
your design decisions.

Because of the efficiency requirements, your dictionaryukhoot just be an adaptor for some existing Java
Standard Library class. It should instead be a new datataeteic Your dictionary should be implemented in
GaneDi ctionary.java

2.5 Searching for Words

For the computer’s turn, your job is to find all words that thertan player missed. In this phase, the same conditions
apply as for the human’s turn, plus the additional restriittihat the computer cannot include any words that were
already found by the human.

To do this, you will need to search the Boggle board for alldgopresent. Thget Al | Wor ds() method in the
game interface should call one of the two following searchtsgies. We should be able to switch strategies via the
set Sear chTacti ¢c() method.

2.5.1 Board-Driven Search

The first strategy is the obvious one: Recursively searclbtiaed for words beginning at each square on the board.
As with any exponential search, you should prune the searchugh as possible to speed things up. One important
strategy is to recognize when you're going down a dead endekample, if you are searching for words that begin
with the letters “ZX", you can use the dictionary'sPr ef i x() method (which you will implement), to determine
that there are no English words that begin with this prefix@am@cognize that your program can abandon this search
path.

2.5.2 Dictionary-Driven Search

You should also implement a second strategy that iteratesalywords in the Dictionary and checks whether these
words can be found on the given board. There are varioustyiold can play to improve the efficiency of this approach.
We leave it to you to find these tricks.

2.6 Correctness

The BoggleGame interface allows the game to be developedatefy from user interface considerations. We should
be able to use your game in our Ul or test program without meatifin. The interface also provides thet Gane()
method, which isxtremely useful for debugging and testing your search functions.

Your user interface is allowed to assume traditional Boggles, although you might wish to make it somewhat
more general. Your game and dictionary should not assunse thangs.

3 The Peer Review Process

The Peer Review component of this assignment will make updfatour project grade. In a nutshell, here’s the
process, which is double-blind, meaning that you will nobkrwhose code you are reviewing, and you will not know
who your reviewers are:

1. You will submit your solution and your report by the firstaddine. At the first deadline, you will receive an
email message that includes up to four other solutions fartgaeview. This message will also include forms
for submitting your Peer Reviews.

2. You will have three days to complete your Peer Reviews.rédyce your Peer Reviews, you may use any test
methodology that you wish, including both black box testamgl a modified form of white box testing—you
will be given bytecodes, so you can invoke methods with wefined interfaces, but you will not have access
to anyone else’s source code.

3. After you submit your Peer Reviews, you will receive a naggsthat contains the reviews of your solution along
with forms to evaluate each of the reviews. You will then hiave days to (1) write your Testing Report and (2)
optionally improve your solution based on information thati learned from the Peer Reviews of your code.

Your Testing Report will explain what you learned from theePReview process and will evaluate the quality
of the Peer Reviews that you received.

3.1 Writing Your Peer Reviews

Your Peer Review should provide constructive comments emthality of the code that you're evaluating. Ideally,
your review should help the original developers improvértbede by describing your test methodology, by describing
bugs that you found, and by speculating on possible causasgsfthat you have uncovered. Please be courteous—
remember that your reviews will be evaluated by your reviesve

Your review should include the following components:

e A summary of your testing methodology. This component wkktly be the same for each review you write.

e A summary of your findings. Be sure to give your most imporfamints, eg, “We found submission #43 to
be extremely robust. The only bugs that we found were in tl€)fmethod, where it appears that the authors
have made strange assumptions about ...” Or perhaps, “Eie fo@actionality of submission #7 appears to be
correct, but we believe that we have found 13 distinct bugduding 12 that are related to corner cases . . ”

e Detailed comments. This last component is where you carritdesgour test cases, the results of specific tests,
a list of bugs, etc. Of course, it's most useful if you can oiga these comments in some logical fashion, rather
than simply providing an unordered list of comments.

3.2 Testing Your Assigned Solutions

We will provide the bytecode for each submission that youassteed to review. In particular, you will receive only
the bytecode that corresponds to code that the authors gatimio test this code, you should place your test code,
your dictionary and your word files into a new directory thahtains the submitted bytecode. Then recompile your
test code in this directory and run it as you would your ownecod

Note: It is extremely important that you adhere to the predidnterface, because the interface is how other
students will access your code. Be certain that your test aad your solution are independent and that other students
will be able to run your solution’s bytecode in this manneor Ehis and other reasons, we encourage you to begin
developing your testing strategy before the first deadByeensuring that you understand how to test someone else’s
compiled codébefore the first deadline, you can save yourself considerable timoeedfort during the second phase
of this assignment.

3.3 Writing Your Testing Report

Your Testing Report should have three components.

1. Your summary of the overall Peer Review process. You mighisider the following questions, though you
may of course consider other questions:

Did you learn anything by writing your testing code/testutg? Did you learn anything by testing the other
solutions? Did you learn anything from the Peer Reviewsybatreceived?

2. Your evaluation of your Peer Reviews. (You should rankeorgbur reviews from best to worst.) Which of
your reviews was most useful and why? For each review, wergtlals and results clear? Was the testing
methodology thorough? Did the review help you identify amdafiy bugs?

3. A description of your revised solution (if any). Be sureexplain how the Peer Reviews that you received
helped you in revising your solution.

4 Whatto Turn In

Here are details on the three deadlines and the penaltiesigsing them.

4.1 Deadlinel

Source code: Turn in electronic copies ddoggl e. j ava, GaneManager . j ava, andGaneDi ct i onary. j ava. Do
not submit other files that were included in the source distion; they will be disregarded. Make sure that your code
compiles and that all classes have the correct names andl te ¢orrect files.

If you do not submit your solution on time, you will lose parfor being late, and your reviewers get to choose
whether or not they will review your solution. Since the ew§ can help you test your program to improve your final
submission, it’s in your best interest to submit your salatbn time.

Report: In your report, be sure to include a convincing discussiothefasymptotic running time of the dictionary
and the reasons for your design decisions. Also discussetative efficiency of the two search tactics. Which one
is better for larger or smaller dictionaries? What condisi@nd parameters affect which strategy you'd want to use?
Finally, include any other material that may be relevardiidinggame design andtesting methodol ogy.

4.2 Deadline 2

Submit your Peer Reviews. It's important that you meet tieiadline, because you need to give your reviewees time
to interpret your Reviews. If any of your reviews is late, weill receive an automatic reduction in your grade.

4.3 Deadline 3

Submit your Testing Report, any test code that you used &tenrur Peer Reviews, and (optionally) your revised
solution. The only penalty for missing this deadline is au&thn in your grade.

Acknowledgments. This assignment was originally developed by Todd Feldmaherhanced by Julie Zelenski
and Matt Alden. It has been extensively modified by WalterrighaThe Peer Review component was designed by
Elliot Kramer, Joanna Smith, Joe Tessler, and Calvin Lin.

