CS 314H Algorithms and Data Structures — Fall 2012 Programmng Assignment #6
Treaps Due November 11/14/16, 2012

In this assignment you will work in pairs to implement a mags(iative lookup) using a data structure called
a treap, which is a combination of a tree and a heap. Your kelfestge in this assignment will be to carefully and
thoroughly test your data structure, so you will also be dgkedesign a testing program for your code. For this
assignment, you should not discuss testing strategiesotlitr teams.

You will again be writing Peer Reviews, with the followingsziule.

Program and Report Due 5:00pm Sunday November 11
Peer Reviews Due 5:00pm Wednesday November 14
Testing Report and Test Code Duies:00pm Friday November 16

1 Treaps

A treap is a binary search tree that uses randomization to produaadsd trees. In addition to holding a key-value
pair (a map entry), each node of a treap holds a randomly ohaserity value, such that the priority values satisfy
the heap property: Each node other than the root has a priority that is at leasdrge as its parent’s priority. An
example treap is shown in Figure 1, where the keys are shottre &abp of each node and the priorities are shown at
the bottom of each node. Notice that the keys obey the bireasch tree (BST) property and the priorities obey the
heap property. Because the keys obey the BST property, ajooferation can be performed just as with any BST.
However, the insert and remove operations are more complex.

4407 w 733

(1
\4743

Figure 1: A treap for a map with key sét, 3, 4, 5, 6, 8, 9. For each node, the key is shown in the top half, while the
priority is shown in the bottom half. The priority values ateosen at random, with smaller numbers indicating higher
priority.

To insert a new node with key k, we first perform the insertion at the appropriate leaf pasiaccording to the
BST property, exactly as in a binary search tree (See FigufEh node is assigned a randomly chosen prigignd
because’s parenty may have priority greater thgn the heap property may be violated. To restore the heap fyope
we perform a rotation, makingthe parent ofy, as shown in Figure 2(b). Specificallyxfis the left child ofy, then
we rotate right aroung, and ifx is the right child ofy, then we rotate left around Nodex now has a new parent, and
the heap property may still be violated, requiring anotbéation. In general, the heap property is restored by rugati
the new nodex up the treap as long as it has a parent with higher prioritguié 2 shows an insertion requiring 2
rotations.

To remove a nodg, we “reverse” the insertion. We rotatedown the treap until it becomes a leaf, and then we
simply clip it off. At each step, the decision to rotate leftright is governed by the relative priority of the children.

(6
\1059

e
@b

3 o

4407 193 4407 \&8§Q 248 _/g
1 >h >ﬂ >a
74 73

193
arag o403 733 U 2488 3 347 (o403 733

éb

(5
\9405

tb

(a) (b) (c)

Figure 2: Inserting new nodeinto a treap. (a) The new nodewith keyk=4 and priorityp=2486, is added as a leaf
according to the BST property. The heap property with reispecs parenty is violated. (b) The situation after a right
rotation aroundy; the heap property with respectxs new parentis violated. (c) After a left rotation arourgl the
heap property is restored.

The child with the higher priority should become the new par&hus, ifx's left child has higher priority thar's right
child, then we rotate right around Conversely, ii's right child has smaller priority thaxis left child, then we rotate
left aroundx. Figure 3 illustrates a removal requiring 2 rotations. Teinoval reverses the insertion of Figure 2.

All three map operations—lookup, insert, and remove—rutimire O(h), whereh is the height of the treap. Itis
not hard to show that a treap witinodes has expected heighflog n). Note that the root of a treap is determined by
the randomly chosen priorities. The node with the highastity (smallest key value) is the root. Thus, the root node
is equally likely to contain any of the map entries, regasdlef the order in which the entries are inserted or removed.
Consequently, we expect that half of the entries will be al#ft subtreap and the other half in the right subtreap. The
analysis of treap height is therefore similar to the analg$recursion depth in quicksort.

2 Your Assignment

Implement a map using a treap. In particular, you should émgnt the following interface. Your treap should store
entries with keys that ar€onpar abl e objects and values that a@j ect s. Thel ookup(k) method should
return null if no entry with ke is in the map.

public interface Treap {
hj ect | ookup(Conpar abl e key);
voi d insert (Conparabl e key, Object val ue);
voi d insert (Conparabl e key, Object value, int priority);
hj ect renove(Conparabl e key);
Treap [] split(Conparable key);
void join(Treap t);
void printTreap(PrintWiter o0);
void resetlterator();
Conpar abl e next Key();
doubl e bal anceFactor () throws OperationNot SupportedExcepti on;
void neld(Treap t) throws Operati onNot SupportedExcepti on;
void difference(Treap t) throws OperationNot SupportedExcepti on;

A more detailed description of the interface iSfineap. j ava. Implementyour treap-based maplineapMap. j ava

@b

N

e e
f 4407 @ 4407 b
$% s & 5

193
2407 (9403 733 (4743 X 2488 3 4743 Y o40 733

£
éb
o

(a) (b) (c)

Figure 3: Removing a nodefrom a treap. (a) Nodg has two children, of which the left chilhas smaller priority.
(b) After a right rotation arouns, nodex now has only one childy. (c) After a left rotation aroung, nodex is now a
leaf and can be clipped off like an excessively long toenail.

The insert method. Insertion into the treap should be implemented as outlireliee.
The remove method. Removal from the treap should be implemented as outlindgkear

The split method. A treapT can besplit, using a ke, to produce two treapd,; andT%, such thafl; contains all

of the entries ifl" with key less thark, andT; contains all of the entries i with key greater than or equal fo To
perform the split, we insert int®’ a new entryr with key k and priorityp = 0, forming a new treafi’. (We assume
that O is the smallest possible priority value.) Becausms the smallest possible priorityjs the root of7”, so the
split has been accomplished with being the left subtreap ari@d being the right subtreap. You should not “lose” any
value associated with if & is already in the treap, although it is ok if you destroy thet tokap.

The join method. The inverse of a split igoin, in which two treaps]; and75, with all keys inT; being smaller
than all keys iril;, are merged to form a new tredp To perform the join, we create a new tréBpwith an arbitrary
new root noder and with7; andT; as the left and right subtreaps. We then remeveom 7" to form the joined
result?.

Split and join both take timé©(h), whereh is the height of thel” (the input to split or the result of join). The
expected height i®(logn), wheren is the size ofl’, so split and join both run i (logn) expected time. More
interestingly, split and join can be used as subroutinesdbl two treaps or take théi f ference between two treaps.
You may implement these for additional karma.

3 Testing

Since the treap in this assignment is not part of a largeriegdfgn, you will not be able to use or test your treap
without writing your own test program. Write a program {ineapTest . j ava) to test your treap for correctness.

Your test program should work with any implementation of Tneap interface. It should not find any errors in
a correct implementation. For errors that it does find, itdtigproduce output that would be useful to a human. You
are not required to test the portions that you do not implémearself, but you should test everything that you do
implement.

4 Karma

Three of the operations in the interfade(anceFact or () ,mel d() anddi f f er ence()) are optional. Imple-
ment them for extra karma. If you do not implement them, tham@per at i onNot Suppor t edExcepti on

4.1 Meld

A meld takes two treapd; andT> and merges them into a new tréApmuch like the Vulcan mind meld for which it
is named. Unlike a join, a meld does not require any relationship leetmthe keys i, and75. Meld is a naturally
recursive procedure and should be able to meld two treapzeot andm (m < n) in O(mlog(n/m)) time. Describe
how you meld treaps and how your algorithm meets the spec@fighptotic time bound.

4.2 Difference

The difference between two treapd;; and7s, is a treagdl’ containing the keys ot} with any keys inT> removed.
The difference can also be computed recursively and als® iru@(m log(n/m)) time. Describe how you take a
difference and how your algorithm satisfies this time bound.

4.3 Diagnosing Problems Through Testing

Typically, the goal of a test program is to identify bugs. M&ome additional work, you can attempt to diagnose
common problems by using the observed behavior of the pnogFr example, if the iterator misses one key, it is
likely that the missing key is the first or last key added. A f@®gram can attempt to verify this hypothesis and
provide a suggestion to the user. Can you use your test prograrovide assistance in finding common mistakes?

4.4 Balance statistics

It would be useful to know how balanced or imbalanced youwaris. The balance factor is the ratio between the
height of the treap and the minimum possible height. A pésfdmlanced treap will have a balance factor of 1.0.
Include observations on how well the treap seems to kedpli@kanced in your report.

5 Whattoturnin

Except for the specific names of the files, the directions foatto turn in are the same as for Assignment 5, but we
repeat them below for your convenience.

5.1 Deadline 1l

Your code and assignment report are due, as normal. If youryrour code late, your reviewers will have the choice
of whether or not to review your code, so it is in your bestriest to not take any late days for this assignment.
Regardless of whether you have submitted your assignmént y®t, on Sunday night, you will be assigned several
projects to review.

Turn in Tr eapMap. j ava andTr eapTest . j ava and any other files necessary for your implementation. Be
sure to comment any non-obvious portions of your assignnitease do not use package¥vhen you use a package,
your Peer Reviewer, who only has access to your bytecodapteasily run your code.

Make sure that your code compiles and that all classes hawstinect names and are in the correct files. If you do
not submit your solution on time, you will lose points for bgilate, and your reviewers get to choose whether or not
they will review your solution. Since the reviews can helpyest your program to improve your final submission,
it's in your best interest to submit your solution on time.

5.2 Deadline 2

Your peer reviews are due. If you turn these in late, your graill be penalized.

INot really.

5.3 Deadline 3

Your revised code, testing report, and reviewer grades age dou have the option to fix your code based on the
feedback you received, if you have time. The testing regwukl cover all insight into the review process, what you
did, how you did it, what you learned, what you learned fromtéviews of your own code, what this revealed about
your code, and what changes you made/would make given nmee ti

Acknowledgments. We thank Bobby Blumofe, now at Akamai, for the original versiof this assignment, and
Walter Chang for his subsequent modifications.

