
CS 314H Algorithms and Data Structures — Fall 2012 Programming Assignment #6
Treaps Due November 11/14/16, 2012

In this assignment you will work in pairs to implement a map (associative lookup) using a data structure called
a treap, which is a combination of a tree and a heap. Your key challenge in this assignment will be to carefully and
thoroughly test your data structure, so you will also be asked to design a testing program for your code. For this
assignment, you should not discuss testing strategies withother teams.

You will again be writing Peer Reviews, with the following schedule.

Program and Report Due 5:00pm Sunday November 11
Peer Reviews Due 5:00pm Wednesday November 14
Testing Report and Test Code Due5:00pm Friday November 16

1 Treaps

A treap is a binary search tree that uses randomization to produce balanced trees. In addition to holding a key-value
pair (a map entry), each node of a treap holds a randomly chosen priority value, such that the priority values satisfy
the heap property: Each node other than the root has a priority that is at least as large as its parent’s priority. An
example treap is shown in Figure 1, where the keys are shown atthe top of each node and the priorities are shown at
the bottom of each node. Notice that the keys obey the binary search tree (BST) property and the priorities obey the
heap property. Because the keys obey the BST property, a lookup operation can be performed just as with any BST.
However, the insert and remove operations are more complex.

4
2486

8
1936

6
1059

4407
5

9403
9

7336

4743

3

1

Figure 1: A treap for a map with key set{1, 3, 4, 5, 6, 8, 9}. For each node, the key is shown in the top half, while the
priority is shown in the bottom half. The priority values arechosen at random, with smaller numbers indicating higher
priority.

To insert a new nodex with key k, we first perform the insertion at the appropriate leaf position according to the
BST property, exactly as in a binary search tree (See Figure 2). The node is assigned a randomly chosen priorityp, and
becausex’s parenty may have priority greater thanp, the heap property may be violated. To restore the heap property,
we perform a rotation, makingx the parent ofy, as shown in Figure 2(b). Specifically, ifx is the left child ofy, then
we rotate right aroundy, and ifx is the right child ofy, then we rotate left aroundy. Nodex now has a new parent, and
the heap property may still be violated, requiring another rotation. In general, the heap property is restored by rotating
the new nodex up the treap as long as it has a parent with higher priority. Figure 2 shows an insertion requiring 2
rotations.

To remove a nodex, we “reverse” the insertion. We rotatex down the treap until it becomes a leaf, and then we
simply clip it off. At each step, the decision to rotate left or right is governed by the relative priority of the children.

1



8
1936

9403
5

6
1059

4743 9403
9

7336
1

6
1059

4743 2486
9

7336
1

6
1059

4407
5

9403
9

7336

4743

3

1

8
1936

3
4407

3
4407

8
1936

4
2486

5
y

x

4

y

x

xz

z

(c)(a) (b)

2486
4

Figure 2: Inserting new nodex into a treap. (a) The new nodex, with keyk=4 and priorityp=2486, is added as a leaf
according to the BST property. The heap property with respect to x’s parenty is violated. (b) The situation after a right
rotation aroundy; the heap property with respect tox’s new parentz is violated. (c) After a left rotation aroundz, the
heap property is restored.

The child with the higher priority should become the new parent. Thus, ifx’s left child has higher priority thanx’s right
child, then we rotate right aroundx. Conversely, ifx’s right child has smaller priority thanx’s left child, then we rotate
left aroundx. Figure 3 illustrates a removal requiring 2 rotations. Thisremoval reverses the insertion of Figure 2.

All three map operations—lookup, insert, and remove—run intime O(h), whereh is the height of the treap. It is
not hard to show that a treap withn nodes has expected heightΘ(log n). Note that the root of a treap is determined by
the randomly chosen priorities. The node with the highest priority (smallest key value) is the root. Thus, the root node
is equally likely to contain any of the map entries, regardless of the order in which the entries are inserted or removed.
Consequently, we expect that half of the entries will be in the left subtreap and the other half in the right subtreap. The
analysis of treap height is therefore similar to the analysis of recursion depth in quicksort.

2 Your Assignment

Implement a map using a treap. In particular, you should implement the following interface. Your treap should store
entries with keys that areComparable objects and values that areObjects. Thelookup(k) method should
return null if no entry with keyk is in the map.

public interface Treap {
Object lookup(Comparable key);
void insert(Comparable key, Object value);
void insert(Comparable key, Object value, int priority);
Object remove(Comparable key);
Treap [] split(Comparable key);
void join(Treap t);
void printTreap(PrintWriter o);
void resetIterator();
Comparable nextKey();
double balanceFactor() throws OperationNotSupportedException;
void meld(Treap t) throws OperationNotSupportedException;
void difference(Treap t) throws OperationNotSupportedException;

}

A more detailed description of the interface is inTreap.java. Implement your treap-based map inTreapMap.java

2



8
1936

9403
5

(c)(a) (b)

6
1059

4407
5

9403
9

7336

4743

3

1

4
2486

x

z

6
1059

4743 2486
9

7336
1

3
4407

8
1936

4

y

x

z

6
1059

4743 9403
9

7336
1

8
1936

3
4407

5
y

x 4
2486

Figure 3: Removing a nodex from a treap. (a) Nodex has two children, of which the left childz has smaller priority.
(b) After a right rotation aroundx, nodex now has only one child,y. (c) After a left rotation aroundx, nodex is now a
leaf and can be clipped off like an excessively long toenail.

The insert method. Insertion into the treap should be implemented as outlined earlier.

The remove method. Removal from the treap should be implemented as outlined earlier.

The split method. A treapT can besplit, using a keyk, to produce two treaps,T1 andT2, such thatT1 contains all
of the entries inT with key less thank, andT2 contains all of the entries inT with key greater than or equal tok. To
perform the split, we insert intoT a new entryx with keyk and priorityp = 0, forming a new treapT ′. (We assume
that 0 is the smallest possible priority value.) Becausex has the smallest possible priority,x is the root ofT ′, so the
split has been accomplished withT1 being the left subtreap andT2 being the right subtreap. You should not “lose” any
value associated withk if k is already in the treap, although it is ok if you destroy the old treap.

The join method. The inverse of a split isjoin, in which two treaps,T1 andT2, with all keys inT1 being smaller
than all keys inT2, are merged to form a new treapT . To perform the join, we create a new treapT ′ with an arbitrary
new root nodex and withT1 andT2 as the left and right subtreaps. We then removex from T ′ to form the joined
resultT .

Split and join both take timeO(h), whereh is the height of theT (the input to split or the result of join). The
expected height isΘ(log n), wheren is the size ofT , so split and join both run inO(log n) expected time. More
interestingly, split and join can be used as subroutines tomeld two treaps or take thedifference between two treaps.
You may implement these for additional karma.

3 Testing

Since the treap in this assignment is not part of a larger application, you will not be able to use or test your treap
without writing your own test program. Write a program (inTreapTest.java) to test your treap for correctness.

Your test program should work with any implementation of theTreap interface. It should not find any errors in
a correct implementation. For errors that it does find, it should produce output that would be useful to a human. You
are not required to test the portions that you do not implement yourself, but you should test everything that you do
implement.

3



4 Karma

Three of the operations in the interface (balanceFactor(), meld() anddifference()) are optional. Imple-
ment them for extra karma. If you do not implement them, throwanOperationNotSupportedException

4.1 Meld

A meld takes two treaps,T1 andT2 and merges them into a new treapT , much like the Vulcan mind meld for which it
is named1. Unlike a join, a meld does not require any relationship between the keys inT1 andT2. Meld is a naturally
recursive procedure and should be able to meld two treaps of sizen andm (m ≤ n) in O(m log(n/m)) time. Describe
how you meld treaps and how your algorithm meets the specifiedasymptotic time bound.

4.2 Difference

The difference between two treaps,T1 andT2, is a treapT containing the keys ofT1 with any keys inT2 removed.
The difference can also be computed recursively and also runs in O(m log(n/m)) time. Describe how you take a
difference and how your algorithm satisfies this time bound.

4.3 Diagnosing Problems Through Testing

Typically, the goal of a test program is to identify bugs. With some additional work, you can attempt to diagnose
common problems by using the observed behavior of the program. For example, if the iterator misses one key, it is
likely that the missing key is the first or last key added. A test program can attempt to verify this hypothesis and
provide a suggestion to the user. Can you use your test program to provide assistance in finding common mistakes?

4.4 Balance statistics

It would be useful to know how balanced or imbalanced your treap is. The balance factor is the ratio between the
height of the treap and the minimum possible height. A perfectly balanced treap will have a balance factor of 1.0.
Include observations on how well the treap seems to keep itself balanced in your report.

5 What to turn in

Except for the specific names of the files, the directions for what to turn in are the same as for Assignment 5, but we
repeat them below for your convenience.

5.1 Deadline 1

Your code and assignment report are due, as normal. If you turn in your code late, your reviewers will have the choice
of whether or not to review your code, so it is in your best interest to not take any late days for this assignment.
Regardless of whether you have submitted your assignment yet or not, on Sunday night, you will be assigned several
projects to review.

Turn in TreapMap.java andTreapTest.java and any other files necessary for your implementation. Be
sure to comment any non-obvious portions of your assignment. Please do not use packages.When you use a package,
your Peer Reviewer, who only has access to your bytecode, cannot easily run your code.

Make sure that your code compiles and that all classes have the correct names and are in the correct files. If you do
not submit your solution on time, you will lose points for being late, and your reviewers get to choose whether or not
they will review your solution. Since the reviews can help you test your program to improve your final submission,
it’s in your best interest to submit your solution on time.

5.2 Deadline 2

Your peer reviews are due. If you turn these in late, your grade will be penalized.

1Not really.

4



5.3 Deadline 3

Your revised code, testing report, and reviewer grades are due. You have the option to fix your code based on the
feedback you received, if you have time. The testing report should cover all insight into the review process, what you
did, how you did it, what you learned, what you learned from the reviews of your own code, what this revealed about
your code, and what changes you made/would make given more time.

Acknowledgments. We thank Bobby Blumofe, now at Akamai, for the original version of this assignment, and
Walter Chang for his subsequent modifications.

5


