CS 314H Algorithms and Data Structures — Fall 2012 Programmig Assignment #7
Web Crawler and Search Engine Due December 7, 2012

In this assignment you will workndividually to build a simple web crawler and search engine. Your makstase
to crawl a portion of the web, to build an index that allows yowuickly access portions of this web, and to respond
to various types of queries—or web searches—much like Goggeéries. For example, you should be able to type
“hoojiedoober” and get a list of pages that contain the wdrajiedoober.”

This assignment asks you to choose appropriate data stegdtusupport various query operations. We ask you
to consider three different types of queries, and we allowtgouse different data structures to support each type of

query.

1 Words of Wisdom

This is a large assignment with what may seem like a distamdldee. In other words, there is plenty of rope with
which to hang yourself. We strongly encourage you to (1} garly, (2) think carefully about your design, (3) think
about testing early and often, and (4) bite off and debuglgpiedes of the assignment before writing more code.

This assignment represents the culmination of your semesteve’re confident that you can now handle an open-
ended assignment of this scope. If you need more incentis@tbearly, realize that this assignment will be weighted
more than any of the others.

2 Web Queries and Search Engines

A typical search engine supports some form of a query languggr example, a simple query might be a string, for
which the search engine would return a list of URL's of webegmathat contain that string. More advanced features
might include a logical OR operator, the ability to searahsignonyms, or the ability to restrict a search to a particula
Internet domain. To satisfy such queries, a special HTTBasijs sent to the server, which parses the query and then
returns the result in the form of web page that contains afdéRd’s that satisfy the query.

Given the enormous size of the web, how do search enginas tbieir results so quickly? These search engines
crawl the web and build indices of subsets of the web. Goodhesdave clever ways of identifying what to index
and how to index them.

3 Your Assignment

For this assignment, you will crawl a small self-containegttipn of the web. The code that we provide
should not be used to crawl the real webbecause our code does not follow established guidelinesréwl-
ing. Moreover, if you try to crawl the real web, you will end upilding enormous indices. (If you're
curious to understand the guidelines for web crawling, tbikowing URL provides a nice set of guidelines:
http://ww. r obot st xt . or g/ gui del i nes. ht ni . You should also understand the repercussions of not fellow
ing such guidelinesht t p: / / xxx. | anl . gov/ Robot sBewar e. ht ml .)

More specifically, your assignment is to implement three gonents.WebCrawler is a stand-alone application
that crawls the web, starting at a URL specified on the comntiard The information gathered by the crawler is
stored in aVeblndex object, which is saved to disk when WebCrawler terminatescea Weblndex has been built,
WebQueryEngine, which is driven by a GUI that we provide, loads a previoussated Weblndex object and is then
able to perform queries on the information stored in the \Webx.

This assignment is structured as a series of increasinghptax types of queries. Before describing these types
of queries, we first explain the three components that youimlement. To simplify your task, we provide pieces of
each class, along with other support classes that intevithehe web server, act as the GUI for your query engine,
etc. In addition to the provided code, you are free to use &ttyeodata structures in the Java Collections Framework.

3.1 The WebCrawler class

TheWebCrawler can be invoked from the command line on a URL. See the Javanusutation on th&RL class for
the various formats that work. For example, the TA can pdiatdrawler at the copy of the class website on his hard
drive with the command ava WebCraw er file:// | ocal host/home/ sharadb/ cs314h/ ww/ i ndex. ht m .
The procedure for specifying files on your own machine mafeddepending on how your operating system handles
hostnames and paths.

You will need to modify the following methods:

e public List parse(String url)
This method is called to parse the specified web page. Thealaptrsing is performed by calling
super . parse(url), but this parse method exists so that computations can berped immediately be-
fore and after parsing; for example, you will probably waouy crawler to not parse a page that has already
been visited. The actual parsing of the pagestoyper . par se(url) will invoke the four methods listed
below depending on the particular HTML tags that are encrenit

e public void handl eStart Tag(HTM.. Tag t, Mitabl eAttributeSet a, int pos)
This method is called when the first part of a two-part tag oemtered, such asa> or . The<a> tag is
especially interesting, as it represents a hyperlink.

e public void handl eEndTag(HTM.. Tag t, int pos)
This method is called when the second part of a two-part tagésuntered, such ag a> or </ b>.

e public void handl eSi npl eTag(HTM.. Tag t, Mitabl eAttri buteSet a, int pos)
This method is called when a one-part tag is encounteret,asicbr >.

e public void handl eText(char[] data, int pos)
This method is called when content text is encountered.

To show you how the parser will call these methods, the ghrtraplemented WebCrawler class that we provide
includes code that parses web pages and prints the seqUieatlback method calls and encountered HTML elements.
You will want to change these methods to actually build yodleix.

3.2 The Weblndex Class

We provide very little of the Weblndex class. The methodsia tlass will only be called by the code that you write
in WebCrawler and WebQueryEngine, so you can build whatienBxing structures you wish. However, this class
should implement the Serializable interface, so any datalnees you use must be Serializable. Serializable objects
can be easily saved to and restored from disk.

You have tremendous freedom to design the index in any mamdike. Therefore, documentation is extremely
important. Be sure to include in your documentation a dedadlescription of your design anehy you chose your
design, including such factors as runtime and space camsides. Analyze and discuss the performance of your
design. Also, your code should be well-commented.

3.3 The WebQueryEngine Class

For the WebQueryEngine class, you should implement a pablistructor along with the following methods:

e public void useWebl ndex(Webl ndex i ndex)
This method sets the Weblndex object that will be used fossgbent queries.

e public Collection query(String query)
This method takes a query expression as an argument, paesgsdry, and returns a list of URL's to pages that
match the query; this list is returned as a Collection ofrgfsi Additional details about parsing can be found in
the next section.

We also provide code to use your WebQueryEngine class. Waderan HTML page (index.html) and supporting
materials that you can use to interact with your WebQueryfignga a web browser. This page should be located with
your .class files and WebCrawler generated index.db file.

You may find it useful to write an alternative query systemyour own testing and debugging. For example,
you may find it easier and faster to use a command line tocaasof a web browser for testing. You can adapt the
existing code for your own purposes.

You may (and probably will) add additional methods, but youstsupport the above two methods and not alter
their semantics. We will test these two methods using autetheechniques, so be sure that there are no hidden
assumptions that would cause such a program to fail.

4 The Query Language

We are now ready to explain the various types of queries that gearch engine should support. For each type of
guery, you have two tasks: (1) represent these queries aedfi(@ently perform these queries. Before you start your
implementation, think carefully about both of these aspettthe problem. You may implement different types of
queries using different indexing structures and diffestrdategies. In your report, be sure to explain why you chose
your various data structures.

While the parser for the query language is not the most inapbipart of the assignment, it does require a fair
amount of explanation. When designing your index, you shaildo keep in mind the kinds of queries you want to
support, as they will have a great impact on your design aetss

4.1 Basic Queries

The first part of your assignment is to support simple querigsch consist of individual words, the logical AND
(&) operator, the logical OR|Y operator, and parentheses. To simplify the parsing, yenguage will have to fully
parenthesize each query, ie, any use of AND or OR requires$ af garentheses. If you would like to relax these
constraints, feel free to do so. Here are some examples iof dpasries:

e snuf fl el upagus
Find pages that contain the word “snufflelupagus.”

e (rosencrantz & guil denstern)
Find pages that contain both “rosencrantz” and “guildenste

e (naughty | bear)
Find pages that contain either “naughty” or “bear.”

e ((wealth & fane) | happi ness)
Find pages that contain both “wealth” and “fame” or pages ¢batain “happiness.”

4.2 Parsing

You might find it useful for your query engine to parse ther®frihat represents the query into some internal repre-
sentation before you perform your search. For example, yightmepresent the above query as the following tree:
You do not need an explicit representation of the parse Iingtehaving one will likely make itnuch easier for you to
optimize your search strategies. For example, to satighabiove query, you could independently search for all pages
that contain the word “wealth,” find all pages that contaimord “fame,” and then take the intersection of these two
sets. However, it'd probably be much faster to find all pagas ¢ontain “wealth” and of these pages search for those
that also contain the word “fame.” Having a parse tree cap el do this.

You will learn much more about parsing if you take a compitauiise, but for now just use the following two-level
approach. First, identifyokens, which in our case will be either words or one of the operatdmsbe more precise,
we will treat the left parenthesis as a separate token fremigfint parenthesis. Second, parse these tokens into a tree.

We have not formally defined what is allowed as a word in ourcdeangine. At a minimum, it should be any
combination of letters and numbers. If you want to define warbre liberally, you may do so. Be sure to provide

happines:

your definition of a word in your code and report. Since moatae engines perform case-insensitive searches, you
should also do so.
Given our definition of a word, we can identify tokens using tbllowing pseudocode:

Token Get Token(String stream

{
c = first character in stream
if (c == "&")
return (AndToken);
elseif (c =="|")
return (O Token);
elseif (c =="(")
return (LeftParenToken);
elseif (c ==")")
return (Ri ght ParenToken);
el se
{
read until blank or operator;
rewind the streamone character if it was an operator
return a Token that contains a reference to the word;
}
}

Notice that you won’t always know when a token ends until yauéhalready read the first character of the next
token, so you'll have to be careful to make sure you do notetally lose characters. You should choose an internal
representation for tokens that is easy to work with and easytlerstand.

This step is known akxical analysis (or justlexing for short) and allows you to iterate through the tokens in a
string of input in order.

Once you can identify tokens, you can create the parse tieg the following pseudocode (this type of parser is
known as aecursive descent parser).

Tree parseQuery()
{
t = get Token();
if (isLeftParens(t))

{
left = parseQuery(); /1 recursively build the I eft subtree
op = getQOperator(); /1 get the binary operator: AND or OR
right = parseQuery(); /1 recursively build the right subtree
op = get Token(); /1 read the remaining R ght Parens
return makeBi naryNode(op, left, right);

}

else if (iswWword(t))

{
return makeWord(t); /1 return a sinple word as a query
}
el se
{
/1 a parse error has occurred; do sonething
}

}

To understand this parser, it might help you to realize thist parser corresponds to the following set of rules.
Starting withQuery, this set of rules, collectively known as a grammar, can geraehe set of all legal queries.

Query — (Query & Query)
Query — (Query | Query)
Query — word

The left hand side of each arrow is callechen-terminal and the right hand side is calledpaoduction. For
example, the first line can be read asQiery is an open paren,@uery, an ampersand,@uery, and a close paren.”

Itis easy for an undisciplined programmer to produce a pahsg almost works but contains difficult to fix bugs.
To avoid this, you should completely understand the gramamdrsketch out your desigrefore you start coding.
There should be a very clear correspondence in your parsgeée the rules of the grammar and the structure of your
code.

One way to structure your code is to have a method for eactenoirtal that contains conditions that correspond
to each production. This will make your code correspond wdegnly to the grammar and will assist in clarity and
debugging.

4.3 Negative Queries

The second part of your assignment will add the ability to enakgative queries. The NOT operatb) (matches
pages that do not contain the specified word.
Our grammar for this second part includes the followingsule

Query — (Query & Query)
Query — (Query| Query)
Query — word
Query — ! word

The pseudocode from above would be extended with anothesecthat might look like this:

/|l earlier clauses
if (isNegation(t))
{
word = get Token();
return nakeNegati on(makeWsr d(word));

}

// later clauses

For extra karma, you can support negation of arbitrary @seriot just words. This changes the last grammar rule
to Query — ! Query, with corresponding changes in your code.

4.4 Phrase Queries

The third type of query is a phrase query, which searchesdontiguous sequence of words. The phrase is indicated
by surrounding a sequence of words in double quotation mdoksexample,”j ohn paul george". The new
grammar is shown below:

Query — (Query & Query)
Query — (Query | Query)
Query — word

Query — !'word

Query — "Words"

Words — wordWords
Words — word

The two productions fovbrds define a list of one or more words as a word or as a word followeabre words.

4.5 Implicit AND Queries

Most search engines support implicit logical AND operattira query consists of consecutive words (not in quotation
marks), the engine searches for pages that contain botrewigladify the parser to support implicit ANDs, matching
the following grammar.

Query — word Query

Query — (Query & Query)
Query — (Query | Query)
Query — word

Query — !'word

Query — "Words"

Words — wordWords
Words — word

Notice that you do not have to worry about precedence in ddsefoo bar | baz. This isn’'t a valid query,
since the OR is not parenthesized.

5 Testing

We may provide some sample webs for you to play with. You can dbwnload other websites using some tool
and crawl the copy on your hard drive. These webs will let yeel Isow your search engine works, but they are no
substitute for rigorous testing.

One way to help test your code is to write a program that géeetarge random graphs representing a “web” with
randomly chosen words and randomly chosen links. The pnogea write this web out to a collection of HTML files
for use by your engine. Although the pages generated in thrm@r will be gibberish, you can in mere seconds create
huge webs to test against.

Another problem is knowing whether you are returning theedrURLSs in a search. On Unix-based operating
systems (like Linux and Mac OS X) there are command line thikdsgr ep that allow you to search files for certain
patterns. This will let you easily check which pages in yoebwontain certain words. Other operating systems may
have similar tools; ask around.

Lastly, you should keep an eye on efficiency. Obviously, yanbe able to index the billions of pages that
Google does, but you should be able to handle tens of thossafruages and more reasonably. Comment on any
scalability issues in your report.

6 Karma

There are numerous things you can do to make your project fanrand entertaining. You can do the following or
come up with your own ideas.

e Modify the parser so that it excludes common words such aefeh“what,” “how,” “and,” “or,” “a,” “an,”
“of,” and “I". If a common word is essential to a search, thegpbign ¢) can be used to explicitly include
it in the search. For exampl&t ar Wars Epi sode +I will include the “I” in the search. When common
words are excluded, Google provides an explanation, so gowetermine what Google’s common words are

through trial and error. More information about Google’®gulanguage can be found at the following URL:
http://ww. googl e. comf support/websearch/. This page also describes Google’s Advanced Search
options, which provide additional ideas.

Note that this requires changes to the parser and lexer. iBdlsat you do not break anything in the process.

Support full negative queries. There are a few ways to do ¥us can choose to support them directly in your
search engine; this will have some impact on your designcelsoi You can also remember DeMorgan’s Law
and other logic principles and convert full negative queiigo something you can handle. Think about how
you want to handle precedence of negation if you do this.

Remove the restriction on parentheses. You can modify teeydanguage so that parens are no longer required,
and the operators have the appropriate precedence. Thiseggore challenging modifications to the parser.
Again, be sure that you do not break support for the requiteshglanguage in the process.

Rank your results in some meaningful manner. Many searcdhnesgank pages by frequency of access, but since
you will not have such information, you could try to orderithby categories (like Yahoo) or by connectedness
(like Google). Alternatively, you could provide some otimeetric of goodness, perhaps by looking at various
HTML tags to get clues about the contents of the page; for @kana hit in the title of a web page might be
ranked higher than a hit in the body of a web page, or any coaibimof these methods.

The existing search engine page and applet isn't very goodadt, it's pretty awful. If you are so inclined,
you may modify it to be more functional and standards-coamtli Google is a good example of an attractive
and functional interface. The old MSN Search site is a goadrgde of a bad interface, although it has been
recently changed to look like Google.

If you implement highlighted excerpts in the results page drighlighted “Google cache” you will need to
add your own methods to support such functionality. Feed foedo so, but be sure not to break the required
useWebl ndex andquer y methods.

Learn a bit about database query optimization. While we anegifull text searches and not relational database
searches, you might find some inspiration for techniquesakenyour searches more efficient here.

Explore the notion oflata mining to produce a list of related pages even when those relatessghignot match
the search string. You can use text data mining, also knowexagnalytics, to support such a feature. Be
warned that data mining is an open research topic that casuooa arbitrary amounts of time, but the basics
should be approachable.

The easiest way to support thidated pages query is to usecosine similarity, which is a common distance
metric used in classic information retrieval. The idea istth page can be represented as a high dimension
vector with eachmeaningful word representing a different dimension and the value ofitheension being the
frequency of that word. To find related pages, simply lookffierdistances among all the vectors and choose the
k nearest vectors using a distance metric; cosine similaritften used as the distance metric, but any distance
metric can work with varying results.

When determining similarity, however, we are relying on thety of certain words to provide differentiat-
ing abilities. Therefore, it is critical to magnify thesdfdrences to provide meaningful separation. Popular
techniques include stop-lists, which remove common wouth @sthe, and, a, |, etc., and frequency analy-
sis, which removes words that are common in the corpus ofrdeats being considered. You may also want
to stress certain types of words, such as verbs and nounsuamgy wish to explore more advanced natural
language processing (NLP) or information theoretic ideas.

In selecting a method to enhance the performance of theeg)éx careful to account for the efficiency of these
queries, which is usually the most difficult part. It's oftevo expensive to find thbest match, so consider
investigating fast approximate schemes and the use ofexatiein structures.

If you do attempt to do text mining, you may also find it helgfubuild at least a basic visualization tool to map
the vectors fromk™ to R? or R? space. These tools can be invaluable for providing insigiotthe structure of
the documents.

There is also the closely related, but more advanced noficareept mining, which would allow your system
to accept a query and find pages related by the concept of #iny,qather than its text or boolean operation.
The idea is that the web pages that you have crawled are filfmfmation—they consist of far more than the
corpus of their words—»but the difficulty is in extractingghinformation in a reasonable way.

For example, a query for American Mustang, should be abledwige at least two groups of pages: those
related to the horse and those related to the car. In the focase, the system would ideally find all pages
surrounding the concept of Mustang horses—issues suchasranagement, populations, history, etc. In the
latter case, the system would ideally find information alibatFord Motor Company, the car’s history, current
sales trends, industry reviews, etc. Identifying and défféiating between such concepts is an active research
topic, though a few basic pioneering commercial applicetiexist.

The general approach is to first annotate the page accomingrd families (sets of words with similar mean-
ings, as would be found in a thesaurus); this step usuallksvoy clustering word groups together using a tool
such as Princeton’s WordNet. This step reduces the numbesrals in the language to a smaller (but still large)
number of clusters. You can then attempt to use techniquaeg@uus to text data mining over these clusters.
For better accuracBayesian models are often utilized.

7 Whattoturnin

You will do this assignment individually. Submit you repartd program in the usual manner.

Source Code. Turn in WebCr awl er. j ava, Wbl ndex. j ava, WebQuer yENngi ne. j ava, and all other source
files that you've created or modified that are required to supmur implementation. You are allowed to modify any
and all files as long as you have the requined\Webl ndex andquer y methods.

Report. Your report will be very important. Since we give you tremeund freedom in design, you should explain
your design and analyze your design decisions, in additial the usual expectations.

Acknowledgments. This assignment was inspired by a similar assignment in &@ksrequivalent course, CS312.
Many thanks to Walter Chang and Andrew Dreher for improvesmenthis assignment.

