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This handout summarizes the main computational and theoretical results from Chapters 4 and 6 of differential
equations. Reading this sheet is NOT a substitute for reading the book, going to lecture, going to discussion section,
or doing the homework. (This sheet may not make sense until you do at least one of those things.)

For the rest of this sheet, “I” will mean an open interval (a, b) where a could be −∞ and b could be +∞.

Theory

Existence and uniqueness theorem: Suppose p1(t), . . . , pn(t), f(t) are all defined and continuous on I. Then
for any single point t0 in I and any numbers γ0, . . . , γn−1, there is a solution y(t) defined on I to the initial value
problem:

y(n)(t) + p1(t)y(n−1)(t) + · · ·+ pn(t)y(t) = f(t); y(t0) = γ0, . . . , y
(n−1)(t0) = γn−1,

and if y2 is a second solution defined on (at least) all of I, then y = y2 on all of I.
[The n = 2 homogeneous case is Thm. 1 of §4.2; the n = 2 inhomogeneous is Thm. 4 of §4.5; arbitrary n is Thm. 1

of §6.1. If you assume y, p1, . . . , pn, f can each be expanded as a power series centered at t0, then you can prove this
by plugging in and patiently manipulating the coefficients. Proving this in general needs crazy amounts of epsilons
and deltas, which is done in (the omitted) Chapter 13.]

Wronskian theorem, pt. 1: If the functions y1(x), . . . , yn(x) are all n − 1-times differentiable on an interval I,
and their Wronskian is nonzero at at least one point in I, then they are linearly independent (on I). Otherwise, the
test is inconclusive.

[The n = 2 case is Lemma 1 of §4.2; arbitrary n is buried in §6.1. The proof is straight out of linear algebra; make
sure you understand why.]

Wronskian theorem, pt. 2: Suppose the functions y1(x), . . . , yn(x) are all defined on an interval I, and all solve
the same homogeneous differential equation:

y(n)(t) + p1(t)y(n−1)(t) + · · ·+ pn(t)y(t) = 0

where p1, . . . , pn are all continuous on I. Then their Wronskian is either 0 everywhere on I, or 0 nowhere on I. In the
first case, y1, . . . , yn are dependent. In the second case, y1, . . . , yn are independent (see pt. 1).

The n = 2 case is Ex. 4.2.34; arbitrary n is Thm. 3 in §6.1. The proof of pt. 2 goes like this: First, letting W (x)
be shorthand for W [y1, . . . , yn](x), show that W (x) satisfies Abel’s equation:

W ′(x) = −p1(x)W (x).

(Abel’s equation for n = 3 case is in Ex. 6.1.30. The general case is tricky.) By integrating factors (see MATH 1B)

the only solutions defined on I to the previous equation are W (x) = Ce−
∫
p1(x) dx for some constant C. The previous

sentence is a simplified restatement of Abel’s identity (which is misstated in the text; it’s missing a minus sign.) This
shows that the Wronskian is either zero nowhere or zero everywhere; to get the final part you use the Existence and
Uniqueness theorem.

Dimension theorem: If p1(t), . . . , pn(t) are all continuous on the same interval I, then the collection of all
solutions to:

y(n)(t) + p1(t)y(n−1)(t) + · · ·+ pn(t)y(t) = 0

defined on I is a real vector space of dimension n under usual addition and scalar multiplication.
[The n = 2 case is kind of Thm. 2 of §4.2; arbitrary n is kind of what you get by putting together Thms. 2 and 3 in

§6.1 with Ex. 6.1.26. The proof of the “vector space” part is straight out of linear algebra (make sure you see why).
Thm. 2 of §6.1 basically says “dimension is at most n” and needs Existence and Uniqueness to prove it. Thm. 3 and
Ex. 6.1.26 together basically say “dimension is at least n” and also needs Existence and Uniqueness to prove them.]

Superposition principle: If y1(t) and y2(t) solve:

p0(t)y
(n)
1 (t) + p1(t)y

(n−1)
2 (t) + · · ·+ pn(t)y1(t) = f1(t), p0(t)y

(n)
1 (t) + p1(t)y

(n−1)
2 (t) + · · ·+ pn(t)y1(t) = f2(t)

then for all constants c1 and c2, y(t) = c1y1(t) + c2y2(t) solves:

p0(t)y(n)(t) + p1(t)y(n−1)(t) + · · ·+ pn(t)y(t) = c1f1(t) + c2f2(t).
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As a special case, to find the general solution to an inhomogeneous linear equation, find a particular solution to it and
add it to the general solution to the homogeneous equation. [The n = 2 case is Thm. 3 of §4.5; arbitrary n is buried
in §6.1. The proof is straight out of linear algebra; make sure you see why.]

Computations

Spring equation: The equation of motion of an object attached to a spring is:

my′′(t) + by′(t) + ky(t) = Fext(t),

where y(t), m, b, k, Fext(t) are the object’s position to the right of equilibrium; m is the object’s mass; b is the friction
coefficient; k is the spring constant; and the sum of all external forces. [See §4.1]

Solutions to const. coeff. homog. lin. diff. eqs: Suppose an, . . . , a0 are all constants with an 6= 0. If r is a
real root of multiplicity k of the auxiliary polynomial:

anr
n + · · ·+ a2r

2 + a1r + a0

then ert, . . . , tk−1ert solve the corresponding:

any
(n) + · · ·+ a2y

′′ + a1y
′ + a0y = 0.

If α±βi are nonreal roots of multiplicity k of the auxiliary polynomial, then eαt cosβt, eαt sinβt, teαt cosβt, teαt sinβt,
. . . , tk−1eαt cosβt, tk−1eαt sinβt solve the differential equation. These two rules will give n linearly independent
solutions. [§4.2 does n = 2 with real roots; §4.3 does n = 2 with non-real roots; §6.2 does all n.]

Undetermined coefficients: The differential equation:

any
(n)(t) + · · ·+ a2y

′′(t) + a1y
′(t) + a0y(t) = f(t),

where f(t) = ert(degree d polynomial), will have a particular solution of the form:

t# of times r is a root of the aux. poly.ert(some polynomial of degree ≤ d).

If instead f(t) = eαt(deg. d1 polynomial) sinβt + eαt(deg. d2 polynomial) sinβt, then let d = max(d1, d2). Then the
equation will have a particular solution of the form:

t# of times α+ βi is a root of the aux. polyeαt
(

(poly. of deg. ≤ d) cosβt+ (possibly different poly. of deg. ≤ d) sinβt
)
.

For linear combinations of the previous two cases, use the superposition principle. [§§4.4-4.5 only treat the case n = 2.
The formulas I wrote above work for all n. The general case is in the omitted §6.3.]

Variation of parameters: To find a particular solution to:

any
(n)(t) + an−1(t)y(n−1)(t) + · · ·+ a2(t)y′′(t) + a1(t)y′(t) + a0(t)y(t) = f(t),

where an−1(t), . . . , a0(t) are all continuous on the same interval I, first find n linearly independent y1(t), . . . , yn(t)
defined on I that solve the corresponding homogeneous equation [see the theory section for why they exist; there’s no
general way to find them if an−1(t), . . . , a0(t) aren’t all constant]. Solve for v′1(t), . . . , v′n(t) in the following equation:

y1 y2 . . . yn
. . . . . . . . . . . .

y
(n−2)
1 y

(n−2)
2 . . . y(n−2)

n

y
(n−1)
1 y

(n−1)
2 . . . y(n−1)

n



v′1(t)
. . .

v′n−1(t)
v′n(t)

 =

 0
. . .
0

f(t)/an

 ,
then integrate; a particular solution is then y1(t)v1(t) + · · ·+ yn(t)vn(t).

For n = 2, by using Cramer’s rule, this simplifies to: Let y1 and y2 be any linearly independent solutions to
ay′′ + by′ + cy = 0. Then a particular solution to ay′′ + by′ + cy = f is

−y1
∫

fy2
a(y1y′2 − y′1y2)

dt+ y2

∫
fy1

a(y1y′2 − y′1y2)
dt.

[The n = 2; a1 and a0 constant case is in §4.6. The n = 2; a1 and a0 not constant case is in the omitted §4.7. (The
course book’s §4.7 is §4.8 in the original book.) The case of n arbitrary is in the omitted §6.4.]

Energy integral lemma: Suppose f(x) is a continuous function, and F (x) is any antiderivative of f(x). Then
any solution y(t) to y′′(t) = f(y(t)) must satisfy 1

2 (y′(t))2−F (y(t)) = K for some constant K. [This is from the course
book’s §4.7, which is §4.8 in the original book.]

Misc: §4.7 also says how to get qualitative information about nonlinear systems by approximating them as linear
systems. §4.8 gives vocabulary about and in-depth analysis of solutions to the homogeneous spring equation. §4.9
gives vocabulary about and in-depth analysis of solutions to the the following inhomogeneous spring equations:

my′′ + by′ + ky = F0 cos γt, my′′ + by′ + ky = mg,

where F0 and γ are nonnegative constants and g is the (nonnegative) gravitational constant. [The course book’s
§§4.7-4.9 are §§4.8-4.10 in the original textbook.]
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