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1. Ex. 4.7.3 Try to predict the qualitative features of the solution to y′′ − 6y2 that satisfies the initial conditions
y(0) = −1, y′(0) = −1. Compare with the computer-generated Figure 4.23. [Hint: Consider the sign of the spring
stiffness.]

Common mistakes. Many of the answers I received were very similar to the answer in the back of the book, in terms
of specific choice of non-essential words and phrasing, equation choice, the steps skipped, and the order in which the
answer presented its steps. I gave no credit to such answers, especially since the answer in the back of the book skips
a lot of steps.

More specifically, the answer in the back of the book said that the spring opposes negative displacements and
reinforces positive displacements. The book then said that this means the solution, while initially both negative and
decreasing, will eventually stop decreasing, and will then increase to +∞.

However, the answer in the back of the book did not explain why the solution will stop decreasing [instead of, say,
having a horizontal asymptote or going to −∞ with slower and slower speeds like − ln(t) does], or why afterwards the
solution will go to +∞ [instead of, say, having a horizontal asymptote].

A few answers also tried to use the energy integral lemma, but most did not use it correctly, and in any case the
energy integral lemma doesn’t give a lot of qualitative information about the solution. The energy integral lemma tells
you that the solution y(t) will also satisfy 1

2 (y′(t))2 − 2(y(t))3 = K for some number K. Several answers then picked
K = 0 because that simplifies calculations and makes the previous differential equation explicitly solvable. However,
K = 0 is the wrong number; plugging in t = 0 into K = 1

2 (y′(t))2 − 2(y(t))3 gives K = 1
2 (−1)2 − 2(−1)3 = 5

2 . I
don’t think the solution of the initial value problem can be explicitly written in terms of polynomials, trig functions,
exponents, and logarithms. �

Solution. We rewrite the equation as:

1y′′(t) + 0y′(t) + (−6y(t))y(t) = 0.

That means that we can consider the equation as describing an undamped mass-spring system with mass m = 1 and
nonconstant stiffness k = −6y(t).

The solution has the following features: (1) At t = 0 it is negative and decreasing. (2) It eventually stops decreasing.
(3) Then it increases, and continues to increase monotonically until it becomes positive, and then it increases to +∞
as t→∞. I will explain why it does each of these three things:

The problem gives that y(0) = −1 and y′(0) = −1. That means that the solution is originally negative and
decreasing. At t = 0, k = −6y(0) = 6, which is a positive stiffness. From what we know about undamped mass-spring
systems, even if the stiffness stayed constant at 6, the object would eventually stop, turn around, and then return to
y = −1. However, since the stiffness is equal to −6y(t), the stiffness will be greater than 6 whenever y(t) < −1. So
this just means that the object will stop and then return to y = −1 even faster than it would have if the stiffness had
remained constant at k = 6.

I can’t use the argument of the previous paragraph once −1 ≤ y < 0, since for those y, we will have 0 < k ≤ 6. At
any given point t, the spring will have positive stiffness and so will pull the object toward the origin. However, as the
object is pulled to the origin the stiffness will decrease, so it could hypothetically be the case that the stiffness never
catches up and never is strong enough to bring the object all the way to the origin.

But the previous hypothetical situation doesn’t happen: After the object returns to y = −1, it will have some
positive velocity. That means even if the object’s speed stayed constant, it would eventually reach the x-axis. But
whenever y(t) < 0, the stiffness k = −6y(t) is positive, which means that the spring is pulling the object towards y(0).
That means the object’s speed isn’t constant; instead it’s increasing. So the object will reach y = 0 even faster than
if its velocity had just stayed constant.

Once the object crosses the t-axis, i.e. y becomes positive, k = −6y will be negative. This can’t happen for real-
world springs, but it physically means that the “spring” pushes the object away from the center. That means that
once y becomes positive, the spring will continue to push the object away from y = 0, i.e. make it more positive. In
fact, since the spring is applying a positive force to the object, the object will accelerate, i.e. its speed will increase,
so it will go to +∞ as t→ +∞ at an even faster rate than if its speed had just stayed constant at what it was when
it first crossed the t-axis. �
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2. Ex. 4.7.12. Use reduction of order to derive the solution y2(t) in equation (5) for Legendre’s equation.

The equation:

(2) (1− t2)y′′ − 2ty′ + 2y = 0

also has the superposition property. It is a linear variable-coefficient equation and is a special case of
Legendre’s equation (1− t2)y′′ − 2ty′ + λy = 0...

...
The Legendre equation (2) has one simple solution y1(t) = t, as can easily be verified by mental

calculation. A second, linearly independent, solution for −1 < t < 1 can be derived. Traditionally,
the second solution is taken to be:

(5) y2(t) =
t

2
ln

(
1 + t

1− t

)
− 1.

Common mistakes. Many answers tried to solve (1− t2)y′′ − 2ty′ + λy = 0 instead of (1− t2)y′′ − 2ty′ + 2y = 0. The
text explicitly refers you to (1 − t2)y′′ − 2ty′ + 2y = 0 [I recopied that part of the text above] and in fact the only
number λ for which y1(t) = t solves (1− t2)y′′ − 2ty′ + λy = 0 is λ = 2.

A lot of answers stopped at (1 − t2)tv′′(t) + (2 − 4t2)v′(t) = 0, presumably because you didn’t know or remember
how integrating factors worked. Many answers didn’t show their work in the integrations, or turned |t− 1| into t− 1
instead of 1− t [the problem said −1 < t < 1].

Finally, in the computations you need to divide by t. Since t could be 0 I wanted you to mention something about
it. You didn’t necessarily need to explain why the solution y2(t) = t

2 ln
(
1+t
1−t
)
−1 still works even at t = 0, but I wanted

you to say something that showed you noticed that you divided by t. �

Solution 1. First, if you know one nonzero solution y1(t) to a homogeneous linear differential equation:

y′′(t) + p(t)y′(t) + q(t)y(t) = 0,

then reduction of order is a way to find a second solution y2(t) to the differential equation that is not a constant
multiple of y1(t).

The way the method works is, write y2(t) as v(t)y1(t) for some unknown function v(t). Plug this y2(t) into:

y′′(t) + p(t)y′(t) + q(t)y(t) = 0,

and you will eventually get a first-order equation in v′(t). Solve for v′(t), for example by using integrating factors,
then integrate to find v(t). Then the second solution y2(t) will be v(t)y1(t).

In this specific problem, we are given that y1(t) = t is a solution to:

(1− t2)y′′ − 2ty′ + 2y = 0

and we want a second solution y2(t) defined on −1 < t < 1. So we let y2(t) = y1(t)v(t) = tv(t). Then we have:

y2(t) = tv(t), y′2(t) = tv′(t) + v(t), y′′2 (t) = tv′′(t) + 2v′(t),

so that:

0 = (1−t2)y′′2−2ty′2+2y2 =
(
(1−t2)tv′′(t)+2(1−t2)v′(t)

)
−
(
2t2v′(t)+2tv(t)

)
+
(
2tv(t)

)
= (1−t2)tv′′(t)+(2−4t2)v′(t).

Therefore, we need to solve

(a) (1− t2)tv′′(t) + (2− 4t2)v′(t) = 0

for v(t). We divide (a) through by t(1− t2) to get the equation:

(b) v′′(t) +
2− 4t2

t(1− t2)
v′(t) = 0.

(Since −1 < t < 1 we can divide by 1 − t2 with no problems. At the end of this solution I will explain what to do
about t = 0. In the meantime, assume that t is in (−1, 0) ∪ (0, 1).) This is a first-order equation in v′(t), so we can
solve it with integrating factors.

As a reminder, integrating factors are a way to solve the first-order inhomogeneous variable-coefficient equation

y′(t) + a(t)y(t) = b(t)

for y(t), for any two functions a(t) and b(t). [In this specific problem, y(t) = v′(t), a(t) = 2−4t2
t(1−t2) , and b(t) = 0.] The

way integrating factors works is, you multiply through by e
∫
a(t) dt to get:

y′(t)e
∫
a(t) dt + a(t)y(t)e

∫
a(t) dt = b(t)e

∫
a(t) dt.

The left-hand side is d
dt

(
y(t)e

∫
a(t) dt

)
, so can be easily integrated.
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Returning to the specific problem, we need to find e
∫

2−4t2

t(1−t2)
dt

and then multiply (b) through by it: That means we

first need to find
∫

2−4t2
t(1−t2) dt, which we can do by partial fractions. We know that there are some numbers A, B, C

for which:
2− 4t2

t(1− t2)
=
A

t
+

B

1− t
+

C

1 + t

for all t 6= 0,±1. Multiplying through by t(1− t2) gives that:

2− 4t2 = A(1− t2) +Bt(1 + t) + Ct(1− t)
holds for all t 6= 0,±1. But since these are polynomials, this means that it also holds for t = 0, 1, and −1, and plugging
in gives:

2 = A, −2 = 2B, −2 = −2C,

so A = 2, B = −1, and C = 1. Therefore,∫
2− 4t2

t(1− t2)
dt =

∫ (
2

t
− 1

1− t
+

1

1 + t

)
dt = 2 ln|t|+ ln|1− t|+ ln|1 + t| = ln|t2(1− t2)| = ln t2(1− t2),

which means the integrating factor is t2(1− t2) = t2 − t4. Multiplying (b) through by it gives:

(c) (t2 − t4)v′′(t) + (2t− 4t3)v′(t) = 0.

The left-hand side of (c) is d
dt

(
(t2 − t4)v′(t)

)
, so integrating (c) gives:

(t2 − t4)v′(t) = a

for some number a. That means v(t) = a
∫

dt
t2−t4 , so we only need to find this last integral.

We use partial fractions again. This time:

1

t2 − t4
=
A

t
+
B

t2
+

C

1− t
+

D

1 + t

for some numbers A-D. Multiplying through by t2(1− t2) gives:

1 = At(1− t2) +B(1− t2) + Ct2(1 + t) +Dt2(1− t).
Then plugging in t = 0, t = 1, and t = −1 gives:

1 = B, 1 = 2C, 1 = 2D.

so B = 1 and C = D = 1
2 . Then plugging in t = 2 gives:

1 = −6A+ 1(−3) + 1
212− 4 1

2 = −6A+ 1,

so A = 0. This means:

v(t) = a

∫
dt

t2 − t4
=

∫ (
1

t2
+

1/2

1− t
+

1/2

1 + t

)
dt = a

(
−1

t
− 1

2
ln|1− t|+ 1

2
ln|1 + t|

)
+ b = a

(
1

2
ln

1 + t

1− t
− 1

t

)
+ b,

for some constant b, so that

y2(t) = tv(t) = a

(
t

2
ln

1 + t

1− t
− 1

)
+ bt.

Since we want a solution that is not a constant multiple of y1(t) = t, we pick a = 1 and b = 0 for simplicity, and we
get that:

y2(t) =
t

2
ln

1 + t

1− t
− 1,

is a solution to Legendre’s equation on (−1, 0) ∪ (0, 1).
According to the problem statement, it’s unclear if we need to also check that y2(t) works at t = 0. But for the

sake of completeness, I’ll say how to check it. The most straightforward way to check it is to plug y2(t) back into the
original equation and check directly that it works. But another way to do it is to divide Legendre’s equation through
by 1− t2 to get:

(d) y′′ − 2t

1− t2
y′ +

2

1− t2
y = 0.

By the existence and uniqueness theorem applied to (d) on the interval (−1, 1), there is only one function y(t) defined
on (−1, 1) that solves (d) everywhere on (−1, 1) and for which y(1/2) = y2(1/2) and y′(1/2) = y′2(1/2). Similarly, there
is only one function z(t) defined on (−1, 1) that solves (d) everywhere on (−1, 1) and for which z(−1/2) = y2(−1/2)
and z′(−1/2) = z′2(−1/2).

If we could show that y(t) = z(t) = y2(t), we would be done, since then y2(t) = y(t) and y(t) was something that
by assumption solves (d) everywhere on (−1, 1). So we will focus on showing y(t) = z(t) = y2(t).

First, since y(t) and y2(t) are defined and solve (d) on at least (0, 1) and satisfy the same initial conditions at 1/2
[by assumption], by the existence and uniqueness theorem applied to the interval (0, 1), we know that y(t) = y2(t)
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everywhere on (0, 1). Since y(t) is twice differentiable on (−1, 1), both y(t) and y′(t) are continuous at t = 0 like y2(t)
and y′2(t) are, so y(0) = y2(0) and y′(0) = y′2(0).

Similarly, by the existence and uniqueness theorem applied to the interval (−1, 0), we know that z(t) = y2(t)
everywhere on (−1, 0). Since z(t) is continuously differentiable on (−1, 1) it must be continuous at t = 0 like y2(t) is,
so z(0) = y2(0) and z′(0) = y′2(0).

This means that y(0) = y2(0) = z(0) and y′(0) = y′2(0) = z′(0). Since we know y(t) and z(t) both solve (d) and
satisfy the same initial data, by the existence and uniqueness theorem on the interval (−1, 1), we get that y(t) = z(t)
everywhere on (−1, 1). Since y2(t) = y(t) on [0, 1) and y2(t) = z(t) on (−1, 0], we have that y2(t) = y(t) = z(t)
everywhere on (−1, 1), so y2(t) solves Legendre’s equation on (−1, 1). �

Solution 2. Prof. Grunbaum, in lecture, derived the following general formula for reduction of order: If y1(t) solves
y′′(t) + p(t)y′(t) + q(t)y(t) = 0, then so does

y2(t) = y1(t)

∫
1

(y1(t))2
e−

∫
p(t) dt dt.

In this problem, if you divide the Legendre equation through by 1− t2 you get:

y′′ − 2t

1− t2
y′ +

2

1− t2
y = 0.

So in this problem, y1(t) = t and p(t) = − 2t
1−t2 . Then by substituting u = 1−t2,

∫
p(t) dt = ln|1−t2|+c1 = ln(1−t2)+c1,

so that:

y2(t) = t

∫
1
t2 e
− ln(1−t2)+c1 dt = t

∫
ec1

t2(1−t2) dt.

Then you integrate
∫

dt
t2(1−t2) and worry about dividing by t as in Solution 1.

For Legendre’s equation, the general formula is faster than doing the integrating factors, but this is not always the
case. �

3. Ex. 4.8.1 A 2-kg mass is attached to a spring with stiffness k = 50 N/m. The mass is displaced 1/4 m to the left
of the equilibrium point and given a velocity of 1 m/sec to the left. Neglecting damping, find the equation of motion
of the mass along with the amplitude, period, and frequency. How long after release does the mass pass through the
equilibrium position?

Common mistakes. Very few answers explicitly said that the problem wanted the first time after t = 0 that y(t) = 0.
Even fewer explicitly said that 1

5

(
π − arctan 5

4

)
is the first time after t = 0 for which y(t) = 0, and even fewer than

that correctly showed it. �

Solution. Let y(t) be the rightward displacement in meters at t seconds. Then we are to solve the initial value problem
2y′′ + 50y = 0, y(0) = −1/4, y′(0) = −1. The auxiliary polynomial is 2x2 + 50, so has roots ±5i. The general
homogeneous solution is

y(t) = c1 sin 5t+ c2 cos 5t, so y′(t) = 5c1 cos 5t− 5c2 sin 5t.

Plugging in t = 0 gives:

− 1
4 = y(0) = c2, −1 = y′(0) = 5c1,

so c1 = − 1
5 and c2 = − 1

4 , which means:

if y(t) is the rightward displacement in meters at t seconds, then y(t) = − 1
5 sin 5t− 1

4 cos 5t .

Therefore, the period is 2π
5 sec and the frequency is 5

2π Hz .

It is possible to write such a solution as A sin(5t+ φ) for some positive number A and some number φ. In fact, A
is the amplitude in meters, and (A, φ) is just the polar coordinates of

(
− 1

5 ,−
1
4

)
, so the amplitude is√(

− 1
5

)2
+
(
− 1

4

)2
=

√
16 + 25

16 · 25
=

√
41

10
m .

Next, (cosφ, sinφ) = 10√
41

(
− 1

5 ,−
1
4

)
. This means tanφ = −1/4

−1/5 = 5
4 , and since φ is in quadrant III, φ = π+ arctan 5

4 .

Thus:

y(t) =

√
41

10
sin

(
5t+ π + arctan

5

4

)
= −
√

41

10
sin

(
5t+ arctan

5

4

)
.

Therefore, y(t) = 0 only when 5t+ arctan 5
4 = nπ for some integer n, i.e.

t =
1

5

(
nπ − arctan

5

4

)
4



for some integer n. This is an increasing function of n, so we want the smallest integer n that makes 1
5

(
nπ− arctan 5

4

)
positive. Since 5

4 > 0, 0 < arctan 5
4 <

π
4 , so this smallest integer n is 1, so the first time t that the mass passes through

equilibrium, i.e. the smallest positive t with y(t) = 0, is 1
5

(
π − arctan 5

4

)
sec . �

4. Ex. 4.8.9: A 2-kg mass is attached to a spring with stiffness 40 N/m. The damping constant for the system is 8
√

5
N-sec/m. If the mass is pulled 10 cm to the right of equilibrium and given an initial rightward velocity of 2 m/sec,
what is the maximum displacement from equilibrium that it will attain?

Common mistakes. Very few answers noticed that the question asked about maximum displacement from equilibrium,
i.e. |y(t)|, instead of maximum righward displacement, i.e. y(t). Since y(t) ends up being positive for all t ≥ 0 the
answers are the same, but you still need to say something about it.

Most answers correctly found the critical point, but only a few answers explicitly said that this critical point is a
maximum, and even fewer correctly showed it. �

Solution. It will turn out that this system is critically damped. In this solution, for ease of writing I will find the
maximum displacement from equilibrium for a critically damped system whose auxiliary polynomial has double root −r
where r > 0, has y(0) = A > 0, and has y′(0) = B > 0 in terms of r, A, and B. Then I will substitute r = 2

√
5,

A = 1
10 , and B = 2 to get the final answer.

Let y(t) denote the number of meters to the right of equilibrium that the mass is after t seconds. Then we are to
find the maximum value of |y(t)|, where y(t) is the solution to the initial value problem

my′′(t) + by′(t) + ky(t) = 0

with:

m = 2, b = 8
√

5, k = 40, y(0) = A, y′(0) = B,

where A = 1
10 and B = 2. A = 1

10 because the initial position was 10 centimeters, which is 0.1 meters.
We first solve the differential equation. The characteristic polynomial is:

2x2 + 8
√

5x+ 40 = 0,

and its roots are:

−8
√

5±
√(

8
√

5
)2 − 4 · 2 · 40

2 · 2
=
−8
√

5±
√

320− 320

4
= −2

√
5.

Therefore, the characteristic polynomial has −r = −2
√

5 as a repeated root, so the solutions to the differential equation
my′′(t) + by′(t) + ky(t) = 0 are:

y(t) = c1e
−rt + c2te

−rt = (c1 + c2t)e
−rt.

for any real numbers c1 and c2.
Now we use the initial conditions to solve for c1 and c2. First,

y′(t) = −rc1e−rt + c2e
−rt − c2rte−rt = e−rt(c2 − rc1 − c2rt),

so

y(0) = c1 · 1 + c2 · 0 · 1 = c1, y′(0) = 1(c2 − rc1 − c2r · 0) · 1 = c2 − rc1.

Therefore, c1 = A and c2 = B + rc1 = B +Ar.
Because A, B, and r are positive, c1 and c2 are both positive. Therefore, y(t) = (c1 + c2t)e

−rt ≥ 0 for all t ≥ 0, so
to find the largest displacement it suffices to maximize y(t) for t ≥ 0.

From the physical description of the problem, it would seem that y(t) has only one critical point for t ≥ 0 and the
critical point is the maximum value of y(t). We will show this mathematically using the first derivative test.

Now,

y′(t) = e−rt
(
−rA+ (B +Ar)− (B +Ar)rt

)
= e−rt

(
B − (Ar +B)rt

)
.

Because B and (Ar+B)r are positive, y′(t) > 0 if t < B
(Ar+B)r , y′(t) = 0 at t = B

(Ar+B)r , and y′(t) < 0 for t > B
(Ar+B)r .

By the first derivative test, y(t) has its global maximum on [0,∞) at:

t = B
(Ar+B)r ,

and the value of y(t) at t = B
(Ar+B)r is:

(c1 + c2t)e
rt =

(
A+ (Ar +B) B

(Ar+B)r

)
exp
(
r B
(Ar+B)r

)
=
(
A+ B

r

)
exp
(
− B
Ar+B

)
.
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Substituting r = 2
√

5, A = 1
10 , and B = 2 gives:

A+ B
r = 1

10 + 2
2
√
5

= 1+2
√
5

10 ,

− B
Ar+B = − 2

1
10 (2

√
5)+2

= − 20
2
√
5+20

= − 10
10+
√
5

= − 10(10−
√
5)

(10+
√
5)(10−

√
5)

= − 10(10−
√
5)

95 = 2
√
5−20
19 .

The final answer is therefore:

1+2
√
5

10 exp
(

2
√
5−20
19

)
meters ≈ 0.24167 m . �

5. Ex. 4.8.11: A 1-kg mass is attached to a spring with stiffness 100 N/m. The damping constant for the system is
0.2 N-sec/m. If the mass is pushed rightward from the equilibrium position with a velocity of 1 m/sec, when will it
attain its maximum displacement to the right?

Common mistakes. Most answers found the correct critical point of 10√
9999

arctan
√

9999. However, the function y(t)

has infinitely many critical points; very few answers explicitly said this. Also, very few answers explained why
10√
9999

arctan
√

9999 is a local maximum, let alone why it is the absolute maximum over all t ≥ 0.

Some answers correctly said that “the smallest nonnegative critical point will be the maximum,” but very few
answers explained why. Also, very few answers explicitly said that 10√

9999
arctan

√
9999 is the smallest positive critical

point, and even fewer correctly showed it. �

Solution. It will turn out that this system is underdamped. In this solution, for ease of writing I will find the nonnegative
time t that maximizes y(t) where y(t) is the solution to any underdamped system whose auxiliary polynomial has complex
roots −α ± βi where α, β > 0, with y(0) = 0 and y′(0) = 1 in terms of α and β. Then I will substitute α = 1

10 and

β =
√
9999
10 to get the final answer.

Let y(t) denote the number of meters to the right of equilibrium that the mass is after t seconds. Then we are to
find the nonnegative time t that maximizes y(t), where y(t) is the solution to the initial value problem

my′′(t) + by′(t) + ky(t) = 0

with:

m = 1, b =
1

5
, k = 100, y(0) = 0, y′(0) = 1.

We first solve the differential equation. The characteristic polynomial is:

x2 + 1
5x+ 100 = 0,

and its roots are:

− 1
5 ±

√(
1
5

)2 − 4 · 1 · 100

2 · 1
= − 1

10
± 1

10

√
1− 4 · 25 · 100 = − 1

10
±
√

9999

10
i.

Therefore, the characteristic polynomial has −α ± βi as nonreal roots where α = 1
10 and β =

√
9999
10 , so the solutions

to the differential equation my′′(t) + by′(t) + ky(t) = 0 are:

y(t) = e−αt(c1 sinβt+ c2 cosβt
)
.

for any real numbers c1 and c2.
Now we use the initial conditions to solve for c1 and c2. First,

0 = y(0) = c2,

so y(t) = c1e
−αt sinβt. Then:

y′(t) = −αc1e−αt sinβt+ βc1e
−αt cosβt,

so 1 = y′(0) = βc1, which means c1 = 1
β . Then:

y′(t) = e−αt
(
−αβ sinβt+ cosβt

)
.

Now, from the physical description of the problem and the graphs of the sample solutions to underdamped systems
in the book, it would seem that the maximum rightward displacement would occur at the first critical point. We will
show this mathematically using the first derivative test, since the book never gives a complete argument of this form.

In order to use the first derivative test, we need to find when y′(t) is positive and negative. To do this, it will help
to write y′(t) as

Ae−αt sin(βt+ φ)

for some real A and φ. In fact, we can choose (A, φ) as the polar coordinates of
(
−αβ , 1

)
. Thus:

A =
√(
−αβ
)2

+ 12 =

√
α2 + β2

β
.
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Then (cosφ, sinφ) = β√
α2+β2

(
−αβ , 1

)
, so tanφ = −β

α . Since φ is in quadrant II, this means φ = π + arctan
(
−β
α

)
=

π − arctan β
α . Therefore,

y′(t) =

√
α2 + β2

β
e−αt sin

(
βt+ π − arctan

β

α

)
= −

√
α2 + β2

β
e−αt sin

(
βt− arctan

β

α

)
.

We know that sinx > 0 only when 2nπ < x < (2n+ 1)π for some integer n, and sinx < 0 only when (2n− 1)π <
x < 2nπ for some integer n. This means y′(t) > 0 only when:

(2n− 1)π < βt− arctan
β

α
< 2nπ,

i.e.
2n− 1

β
π +

1

β
arctan

β

α
< t <

2n

β
π +

1

β
arctan

β

α

for some integer n. In the same way, y′(t) < 0 only when:

2n

β
π +

1

β
arctan

β

α
< t <

2n+ 1

β
π +

1

β
arctan

β

α

for some integer n. Then by the first derivative test, the local maxima of y(t) are at the times tn, where:

tn =
2n

β
π +

1

β
arctan

β

α

for each integer n.
Next, tn ≥ 0 only when n ≥ − 1

2π arctan β
α . But since β

α > 0, 0 < arctan β
α <

π
2 , which means

−1

4
< − 1

2π
arctan

β

α
< 0.

Therefore, tn ≥ 0 only when n ≥ 0.
Finally, substituting in t = tn into y(t) = 1

β e
−αt sinβt gives:

y(tn) =
1

β
exp

(
−2nα

β
π +

α

β
arctan

β

α

)
sin

(
2nπ + arctan

β

α

)
=

1

β
sin

(
arctan

β

α

)
exp

(
−α
β

arctan
β

α

)
e−2απn/β

=
1√

α2 + β2
exp

(
−α
β

arctan
β

α

)
e−2απn/β .

Since 1√
α2+β2

exp
(
−αβ arctan β

α

)
and 2απ

β are positive constants, y(tn) is a decreasing function of n. This means that

the global maximum of y(t) on [0,∞) occurs at t0, i.e. at:

t =
1

β
arctan

β

α
=

(
10√
9999

arctan
√

9999

)
sec ≈ .156087 sec . �

Notice that the maximum value of y(t) is not at one of the places where y(t) = 1
β e
−αt sinβt touches the graph of

1
β e
−αt. First, y(t) touches the graph when t = 1

β

(
n+ 1

2

)
π = 10√

9999

(
n+ 1

2

)
π for some integer n. But

10√
9999

arctan
√

9999 6= 10√
9999

(
n+

1

2

)
π

for any integer n because arctanx is always strictly between −π2 and π
2 . But by using a computer, the difference

between the left-hand side and right-hand side when n = 0 is about:

0.001000066672...

so the maximum value is very close to where the graph of y(t) touches the graph of 1
β e
−αt.
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