
Biomechanics Fundamentals 
A Very Short Course 



Objectives 

• What is a Material Property 

• Practical testing is based on Continuum Mechanics 

• Stress – Strain relationship 

– Tensor quantities 

• Elasticity 

– Viscoelasticity 

– Poro-viscoelasticity 

• Testing Approaches 

– Uniaxial 

– Biaxial 

– Dynamic 



Material Property 

• A material property is a quantity 

that describes a physical 

attribute of a material, 

independent of the shape or 

geometry of the material 

– Examples 

• Modulus of elasticity 

• Poisson’s ratio 

• System Property examples  

– Stiffness 

– Compliance (the inverse of 

stiffness) 



Continuum Mechanics 
• We ignore the underlying physics of the smallest 

particles to obtain relevant information of the 
system of interest 

• Is based on the assumption that d/l <<1 
 d = characteristic length scale of the microstructure 

 l = characteristic length scale of the physical problem 
of interest 

• Example: interested in loading of cells in wall of a 
large artery 
–   d ~ micrometers (mm) 

–   l ~ millimeters (mm) 

–   d/l = 10-6/10-3 =  
  10-3 = 0.001 << 1 



Continuum Mechanics (II) 

• Consider collagen 
based tissues (e.g., 
skin) 
– Collagen fiber has a 

diameter on order of ~1 
mm  (~10-6 m) 

– Hence, continuum 
approach is reasonable 
for tissues with 
dimensions on order of 
~10-3 m (1 mm) or 
greater 

 Humphrey & Delange, 2004 



Stiffness 
• Consider a spring that is 

loaded in compression or 

tension 

– Applying a force (F) results 

in a deformation (d) 

– The stiffness (k) is the ratio 

of the force/deformation 

• The slope of the line is a 

graphical depiction of the 

magnitude of k 

•    

 

• Where x is the current 

position, and x0 is the 

original position 
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Stiffness 

• Robert Hooke, in 1678, 
published the seminal 
observation (in latin) 
– ut tension sic vis 

–  which can be translated 
as, ‘as the force, so the 
extension’  

• Hooke is attributed with 
“Hooke’s Law” 
– Linear relationship between 

stress & strain 

– However, this was not his 
doing 

http://www.edu365.com/aulanet/comsoc/ 

persones_tecniques/Robert_Hooke_archivos/Robert_Hooke.jpg 

http://www.edu365.com/aulanet/comsoc/


Difference in Spring Constants 

• The graph in the figure depicts the basic relationship between 

force and deformation for springs with three different 

“stiffness” values (i.e., k1 < k2 < k3)  

Humphrey & Delange, 2004 



Historical Development of Stress 

• Leonard Euler (pronounced “Oil-er”) in 
1757 (almost 80 years after Hooke) 
developed the seminal definition of stress 

– He called it “force intensity” 

– Defined for a force acting perpendicular to 
an area of interest 

• Augustin-Louis Cauchy in 1827 (50 years 
after Euler) developed the basis of our 
modern understanding of stress 

– Stress is defined for an oriented area 

– For a given differential volume (which in 
the limit is a point), the magnitude of 
stress varies based on the orientation of 
the area of interest 

 

 

 

http://www.herder-oberschule.de/ 

images/euler.jpg 
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~history/BigPictures/Cauchy_5.jpeg 



Normal Stress Definition 
• Stress is dependent upon the 

choice of coordinate systems 
(which is defined by an origin 
and “basis”) 

• Consider a differential force (Df) 
that is perpendicular (or 
“normal”) to a differential area 
(DA) 

• As it is an arbitrary choice, we 
choose to define this force (Df) 
as oriented along the X axis, 
and hence call it Dfx  

• We then define the normal 
stress as the following limit:  

x

x

x

x

A
xx

dA

df

A

f







 0
lim

Humphrey & Delange, 2004 



Shear Stress 

• It is also possible to 
define a force that would 
be oriented parallel to the 
same differential area. 

•  More formally, we state 
that the force is 
perpendicular to the unit 
outward normal vector n 
(where |n| = 1).  

• This situation is called a 
shear stress and is 
defined as the following 
limit:  
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Conceptual differences between 

normal and shear stresses 

• “Pure” or uniform tension 

(or compression) results 

in a change in volume but 

not shape (i.e., if the 

material was a cube to 

start, it would still be a 

cube after uniform 

tension (dilational stress) 

• Pure shear results in a 

change of shape but not 

of volume (deviatoric 

stress) 
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General Stress Equation 

• For an infinitesimal volume 
(which we can think of as a 
teeny tiny little cube) acted 
upon by a force vector, the 
force vector can be 
described in Cartesian 
coordinates as  
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Stress Tensor 
• three different ways to represent the nine (9) stress 

components  

• subscripts to represent the X, Y, Z axes  

• numerical indices, which is also known as Einsteinian 
notation  
– indices i & j can take values of only 1, 2, and 3 (i.e., i = {1,2,3} 

and j = {1,2,3})  
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Tensor Definition 

• Stress is NOT a vector quantity, but rather 

admits to a tensor form.  

• Tensors have an ‘order’ or ‘rank’,  

– Stress (as well as strain) is a 2nd order (or 

rank) tensor.  

– Vectors can be shown to be a 1st order tensor  

– Scalars are a 0th order tensor  



Stress tensor details 

• The terms on the diagonal are the 
normal stresses and the off-diagonal 
terms are shear stresses.  
– Normal stresses are:   

 ii = (11, 22, 33) 

– Shear stresses are 
 ij (12, 13, 23).  

• If the system is in equilibrium, then  
– the shear stresses must have 

certain equivalencies 

– Hence:  12 = 21, 13 = 31, 23 = 
32.  

• Thus, although there are fully nine 
(9) components of the stress tensor, 
there are only six (6) independent 
components  
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Tensors are not dependent on 

choice of coordinate system 

• Coordinate systems other than the Cartesian system can 

also be used, depending upon what is more convenient 

for the physical system.  
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Cylindrical Stresses 

Humphrey & Delange, 2004 
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Spherical Stresses 
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Stress Transformations  

• Consider a 2-D state of 
stress relative to  
–    

–    

• What we seek is a 
method by which we can 
determine the stress for 
any orientation of interest, 
which could facilitate our 
understanding of the 
stresses that develop in a 
tissue.   

yx eeo ˆ,ˆ;

yx eeo  ˆ,ˆ;



2D Stress Transformation 
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Principal Stress 

• “Is there some angle, 

p, such that the 

shear stress is 

identically zero (0)?”  

• To find the min or 

max of any equation, 

we take its derivative 

& set it equal to 0 
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2D Principal Stresses 

• The non-zero stresses at the principal 

angle are the principal stresses 
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What is Pressure? 

• Pressure is the mathematically trivial state of stress 
where the normal (or axial) stresses are all the same for 
any transformation (or rotation) of coordinate systems  
– Given the following 2-D stress  

– xx = yy = -p; xy = 0  
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Strain 
• In solid biomechanics, the basis of 

strain determination is the 

displacement vector (u) for a point 

– current position is denoted by a 

position vector x  

– original position is denoted by a 

position vector X  

– Thus, u = x – X  

• Displacement vectors can also 

vary with time, as well as position. 

–  Hence: u(X, t) = x(X, t) – X  
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Humphrey & Delange, 2004 



Lagrangian Strain Tensor 

• Where i and j take values of {1, 2, 3} 

• The above notation is a compact form of 

the strain tensor 


































j

m

i

m

i

j

j

i
ij

x

u

x

u

x

u

x

u

2

1




Strain tensor (cont’d) 
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Where:   
311332232112 ,,   Green’s strain tensor represents 

nonlinear strain- displacement 

relations in Cartesian coordinates  



Small strain simplification  

• If the displacement is small,  

– then the displacement gradients are small, 

– then (& only then) the nonlinear terms (i.e., 

the squared terms) in the Green’s strain 

equations can be ignored without significant 

loss of accuracy.  

– That is, if ui,j >> (ui,j)
2, then the small strain 

formulation can be used, which is as follows  



Small strain simplification 
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• How small is small? 

• General guideline is 

that the small strain 

approximation can 

be used for strains 

up to 5% (0.005) 



Small strain calculation in 2D 

• To calculate the strain, we simply take the partial 

differentials. As this is only a 2D case, we can 

ignore the out-of-plane components. Let’s do it, 

first for the linearized formulation  
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Strain tensor transformation 

• Strain, like stress, is based on an arbitrary 

choice of coordinate systems 

• Strain tensors can thus be transformed 

• Principal strains are the non-zero strains that 

remain once the coordinate system is rotated 

such that the shear strains go to zero 
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Relationship between stress and 

strain  
• The relationship between stress and strain 

defines the constitutive behavior of a material.  

• It is independent of the geometry of the material. 
Why?  
– Because stress is the force normalized by the 

relevant cross-sectional area and strain is already a 
non-dimensional quantity (displacement change 
divided by original length).  

• Hence, the relationship between stress and 
strain depends on the properties intrinsic to the 
material itself, which are appropriately called 
material properties  



Hook’s Law 

–  = C 

• The ‘C’ term in this 
equation is a matrix 
(stifness matrix),  

– given that both the 
stress and strain 
tensors have 9 terms,  

– then the C matrix must 
be a 9 x 9 matrix, or 
have 81 terms. 

• However, in equilibrium, 
we know that we can 
reduce the stress and 
strain tensors to only 6 
independent terms, 

• hence, this reduces the 
size of the C matrix to a 
total of:  6 x 6 = 36 
terms  
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C matrix is symmetrical, such that C12 = C21, 

C13 = C31, etc., and hence, the 36 

independent terms are reduced to 21 

independent terms  



Linear isotropy 

• If the material is linear and also isotropic, 

–  then the C matrix reduces to one with only 
two independent quantities 

• called the Lame constants 
– G 

–  m  
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Poisson’s ratio, & Lame constants 

• It can be shown (i.e., we’re not developing it 

here) that ,  

– where E is the so-called Young’s modulus,  

– and n is Poisson’s ratio, which is defined as 

the negative ratio of the orthogonal strain to 

an applied strain.  

• The importance of these latter 

two observations are that, if the 

material is linear isotropic, then, 

the entire material properties can 

be determined by performing 

some rather simple testing to 

determine E and n  
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Linear, Elastic, Homogeneous, 

and Isotropic (LEHI)  



Viscoelasticity 

• to develop procedures to 

determine the elastic and 

viscous moduli used in 

various viscoelastic 

models relating stress 

and strain  

• a spring element to 

represent the stiffness of 

a linearly elastic material  

 http://www.beedata.com/nbb/honey-opton.jpg 



Elasticity in Viscoelasticy 

• The modulus, E, of the 
spring is determined by 
applying various strains 
and measuring the 
developed stress.  

• The data points are then 
regressed or curve fit to 
determine the slope of 
the line that best 
represents the data.  

• The slope of the line is 
the measure of the 
modulus of elasticity or 
stiffness  
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Viscous in Viscoelasticity 

• Depicting a 

viscous material 

by using a 

dashpot element  
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Empirical models of viscoelasticity 

• Kelvin-Voight Model  

• This model 
represents a 
viscoelastic solid and 
is depicted by placing 
a spring and dashpot 
elements in parallel  

• Stress – strain 
relationship for this 
model is expressed 
as:  

  E



Maxwell Model 

• This model 

represents a 

viscoelastic fluid. It is 

depicted by a spring 

and dashpot in series 

• 2 parameter equation 

relating stress and 

strain is  
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Standard solid Model 

• reasonable estimate 

of the stress strain 

behavior of a number 

of real biological 

materials  

– cartilage  

– white blood cell 

membrane 

• 3 parameter (E1, E2, 

) function is 
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Creep & Relaxation  

• Empirically, we observe that if the strain is held 

constant, then viscoelastic tissues will 

demonstrate a “stress relaxation”, where the 

stress decreases until it reaches a new 

equilibrium value.  

• Inversely, if the stress is held constant, then 

viscoelastic tissues will demonstrate a 

phenomenon called “creep”, where the strain 

increases until it reaches an equilibrium value  

• Is glass viscoelastic? 



Model Comparisons – Stress 

Relaxation 

Characteristic stress relaxation responses 

 of the Maxwell, Kelvin-Voigt, and Standard element  



Creep Responses 

Characteristic creep responses for the Maxwell,  

Kelvin-Voigt, and Standard element  



Relaxation & Creep 

• Define the relaxation 

function as G(t), and 

the creep function 

as J(t).  

• Maxwell model  
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where m is the viscosity and E is the Young’s modulus  



Standard Model – Stress 

Relaxation 

• Standard Model  

 

 
– where   

•    

•    

•    

– The larger the value of 
tR (via either a large m 
or a small E), the 
slower the relaxation  

      RR tttt
eGGGeEEEEtG

/
0

/
000







0EG 

00 EEG 

EtR m



Standard Model – Creep function 

• Where 

–     

–     

–     
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Measuring moduli 

• How do we get 

the elastic & 

viscous moduli 

that make up 

these models? 

•  An approach for 

the Kelvin-Voight 

Model is 
In this testing protocol, the material is strained to 2% and held until all the viscosity is exhausted 

(i.e., the tissue relaxes to equilibrium). Then, the tissue is strained another 2% (i.e., to 4%), until 

it reaches equilibrium. This process continues up to some maximum strain. The dashed red line 

represents the elastic component of the stiffness (i.e., E). The difference between the elastic 

component and the viscoelastic component represents the viscous modulus  



Dynamic Testing 

• Apply a sinusoidal tensile displacement (strain), resulting in a 
tensile stress  

• We seek an expression that describes the observed phase lag in 
the stress to the strain.  

• To do so, we utilize the Boltzman model (i.e., hereditary 
integrals).  

• A priori, we suspect that there must be a term that accounts for 
some sort of elastic (or “storage”) component and another term 
that accounts for “viscous” energy loss  
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Storage & Loss Moduli 

• Boltzman form 

– We can denote the 

“storage” (in-phase, 

elasticity) and “loss” 

(out-of-phase, 

viscosity) moduli as  

• Ratio of loss and 

storage moduli 

defines the phase 

angle j 
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Phase Lag 

• For viscoelastic 

materials subjected to 

a strain history of the 

form ,  

– we expect there to be 

a phase lag between 

• stress  

• Strain 

– where   

• is the phase lag in 

radians  
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Energy relationship 

• Phase angle j is often expressed as its 

tangent 

– called the viscous damping or phase loss. 

• Tan j is an indicator of the amount of 

strain energy lost relative to the energy 

stored per cycle  

– can be related to hysteresis 

• Resilience = 1 – hysteresis = 1 – 2 pi tan j,  when 

j is small  



Estimation of Mechanical 

Properties from Biologic Tissues 

• Conventional mechanical material testing of a 
larger structure 
(tension, compression, torsion, bending, 
constraints, rates, static, dynamic, fatigue) 

• Mechanical testing at the micro- or nano-level 

• Virtual mechanical testing (Finite Element 
Modeling, non-invasive determination of 
mechanical properties) 



Nanoindentation 

• Mechanical testing 
– Macro tests 

– Spatial variability is 
difficult to measure 

 

• Nanoindentation 
– Elastic modulus 

– Hardness 

– Viscoelasticity 

 

http://www.hysitron.com/Gallery/ 



• Typical load 
displacement curve of 
nanoindentation test 
– Contact stiffness (S) is 

calculated from the 
slope of unloading curve 

– Elastic modulus is 
calculated from S 

Busa et al., 2005 

Akhter et al., 2003 

Interpretation of Indentation 

Data 



Trabecular bone 

Marrow cavity 

(PMMA) 

Ramey, Ayers & Ferguson 

Elastic Modulus within Human 

Mandibular Bone 


