
Lab 3 Primer

Patrick Lowry, T.A.
CS439H, Dr. Elnozahy
October 3, 2012

x86 Interrupts and Exceptions

• Both transfer control to an “interrupt service routine (ISR)”

• ISRs can see the state of the machine’s registers as they were at the time
the event occurred.

• What is the difference between an Interrupt and an Exception?

• Interrupts see the state of the machine after the instruction that was
executing when the event occurred. Can also be “masked” by processor.

• Exceptions see the state of the machine before the instruction that caused
the event to occur. Exceptions cannot be masked.

x86 Interrupts and Exceptions

• What causes them?

• Interrupts are caused by:

• External devices requesting OS attention.

• Application software requesting OS attention.

• Exceptions are caused by:

• Software (application or OS) doing something wrong.

• Intel refers to these as “faults.”

x86 Interrupts and Exceptions

• Masking Interrupts:

• CLI instruction: clears the “Interrupt Flag (IF)” in the FLAGS register

• Clearing has the effect of masking interrupts

• STI instruction: sets the “Interrupt Flag (IF)” in the FLAGS register

• Setting has the effect of allowing interrupts

• Both are privileged instructions that can only be executed in ring 0.

x86 Interrupts and Exceptions

• How are ISRs set up?

• In real mode: through the Interrupt Vector Table (IVT)

• In protected mode: through the Interrupt Descriptor Table (IDT)

• In both the IVT and the IDT, the first 32 entries are reserved for exceptions

• The rest of the entries (indices 32 - 255) are available for use with interrupts

x86 Interrupts and Exceptions

• Notable “Hard-Wired” Exceptions:

Number Description

0 Divided by zero

6 Undefined instruction

8 Double Fault

11 Not Present

13 General Protection

14 Page Fault

x86 Interrupt Vector Table (IVT)

• Starts at 0000:0000

• Each entry is four bytes, specifying the real address (seg : off) of the ISR

Segment

31 16 15 0

Offset

x86 Real Mode Interrupt / Exception Handling

• Step 1: Save state

• PUSH (on the normal stack): FLAGS, CS, IP, and if necessary, an Error Code

...
FLAGS

CS
IP

(Error Code)

SP (pre)

SP (post)

x86 Real Mode Interrupt / Exception Handling

• Step 2: Jump to ISR

• Index IVT; load CS and IP

F000 1234
F000 5678
F000 9ABC
F000 1324
F000 9710

Interrupt
Number CS IP

IVT

x86 Real Mode Interrupt / Exception Handling

• Returning from ISR: IRET instruction

• POP: Error Code (if necessary), IP, CS, FLAGS

CS
IP

...
FLAGS

CS
IP

(Error Code)

SP (post)

SP (pre)

FLAGS

x86 Software-Generated Interrupt

• INT instruction

• Takes a constant operand: the interrupt number you wish to generate

• Register / memory operands are not allowed (assembler error)

• Privileged instruction (can only be executed in ring 0)

• Examples:

• Valid: int $0x80

• Invalid: int (%eax)

Interrupt Descriptor Table (IDT)

• Each entry contains:

• 32-bit address of ISR

• 16-bit CS segment selector to use when running the ISR

• Note that this includes the CPL that will be used when executing

• “Present” bit

• Required privilege level to call this ISR via the INT instruction

• Bit indicating whether or not to clear IF when entering the ISR

x86 Protected Mode Interrupt / Exception Handling

• Step 1: Index the IDT and make sure the corresponding entry is Present.

• What if it’s not?

• Step 2: If this is a software-generated interrupt, check that the current
privilege level is sufficient for this interrupt.

• What if it’s not?

P DPL
1 0
0 X
1 3

Interrupt
Number

IDT

x86 Protected Mode Interrupt / Exception Handling

• Step 3: If there will be a change of privilege by jumping to the ISR, switch to
the new privilege level’s SS and ESP, and PUSH the old SS and ESP on the
new stack.

• Where are each privilege level’s SS and ESP stored?

...
SS (pre)

ESP (pre) ESP (post)

...ESP (pre)

x86 Protected Mode Interrupt / Exception Handling

• Step 4: Save state.

• PUSH: EFLAGS, CS, EIP, and if necessary, an Error Code

...
EFLAGS

CS
EIP

(Error Code)

ESP (pre)

ESP (post)

x86 Protected Mode Interrupt / Exception Handling

• Step 5: Jump to ISR.

• Index into IDT and load CS & EIP

new CS new EIP
0008 F0001234
0010 F0005678
000B F0009ABC
0013 F0001324

Interrupt
Number CS EIP

IDT

