Lecture 22: Static Failure Theories IV

BAEN 375

Design Fundamentals of Agricultural Machines and Structures

Failure in Brittle Materials Under Static Load

- Brittle Materials
 - Fracture instead of yield
 - Fail in tension (generally)
 - Fail due to normal tensile stress
 - Maximum Normal Stress Theory is applicable (modified version)

- Failure of brittle materials in compression is due to combined normal compressive stress and shear
- Some wrought metals can be brittle but even, but most brittle materials have compressive strengths much greater than their tensile strength
- This is due to the presence of microscopic flaws that serve as nuclei for crack formation under tensile loads

Failure in Brittle Materials Under Static Load

- Some cast, brittle materials have shear strength greater than tensile strength but less than compressive strength
- This is different from ductile materials, for which shear strength is about ½ of tensile strength

 Remember that we had a failure ellipse determined from <u>Distortion-Energy</u> <u>Theory.</u>

That theory was modified by the Maximum Shear Theory.

Failure in Brittle Materials Under Static Load

• With **Maximum Normal Stress Theory**, we have

which we know doesn't work for ductile materials.

 But for brittle (uneven) materials, we have Coulomb-Mohr Theory

Failure in Brittle Materials Under Static Load

• Coulomb-Mohr Theory is modified to fit the actual data.

- If $\sigma_1 > \sigma_3$ and $\sigma_2 = 0$, we only need be concerned with quads 1 and 4.
- If σ_1 and σ_3 are positive,

$$N = \frac{S_{ut}}{\sigma_1}$$

- If σ_1 and σ_3 are opposite sign, then either $N=\frac{S_{ut}}{\sigma_1}$ or $N=\frac{S_{ut}|S_{uc}|}{|S_{uc}|\sigma_1-S_{ut}(\sigma_1+\sigma_3)}$
- Check both and use the smaller.

Failure in Brittle Materials Under Static Load

- Remember that we had Von Mises Effective Stress (σ') that accounted for overall stresses in ductile materials.
- We can have the same for brittle, $\tilde{\sigma}$, where:

$$C_{1} = \frac{1}{2} \left[|\sigma_{1} - \sigma_{2}| + \frac{2S_{ut} - |S_{uc}|}{-|S_{uc}|} (\sigma_{1} + \sigma_{2}) \right]$$

$$C_{2} = \frac{1}{2} \left[|\sigma_{2} - \sigma_{3}| + \frac{2S_{ut} - |S_{uc}|}{-|S_{uc}|} (\sigma_{2} + \sigma_{3}) \right]$$

$$C_{3} = \frac{1}{2} \left[|\sigma_{3} - \sigma_{1}| + \frac{2S_{ut} - |S_{uc}|}{-|S_{uc}|} (\sigma_{3} + \sigma_{1}) \right]$$

• And

 $\tilde{\sigma}$ = effective stress for brittle (uneven) materials

$$\tilde{\sigma} = \max(C_1, C_2, C_3, \sigma_1, \sigma_2, \sigma_3)$$

$$\tilde{\sigma} = 0$$
 if max < 0

$$N = \frac{S_{ut}}{\tilde{\sigma}}$$