The Inner Product

Inner product or dot product of

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} :$$

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$

Note that

$$\mathbf{V} \cdot \mathbf{u} = v_1 u_1 + v_2 u_2 + \dots + v_n u_n$$
$$= u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \mathbf{u} \cdot \mathbf{V}$$

THEOREM 1

Let \mathbf{u}, \mathbf{v} and \mathbf{w} be vectors in \mathbf{R}^n , and let c be any scalar. Then

a.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

b.
$$(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$$

c.
$$(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v})$$

d.
$$\mathbf{u} \cdot \mathbf{u} \geq \mathbf{0}$$
, and $\mathbf{u} \cdot \mathbf{u} = \mathbf{0}$ if and only if $\mathbf{u} = \mathbf{0}$.

Combining parts b and c, one can show

$$(c_1\mathbf{u}_1 + \cdots + c_p\mathbf{u}_p) \cdot \mathbf{w} = c_1(\mathbf{u}_1 \cdot \mathbf{w}) + \cdots + c_p(\mathbf{u}_p \cdot \mathbf{w})$$

Length of a Vector

For
$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
, the **length** or **norm of v** is the nonnegative

scalar ||v|| defined by

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$
 and $\|\mathbf{v}\|^2 = \mathbf{v} \cdot \mathbf{v}$

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2} \quad \text{and} \quad \|\mathbf{v}\|^2 = \mathbf{v} \cdot \mathbf{v}.$$
 For example, if $\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}$, then $\|\mathbf{v}\| = \sqrt{a^2 + b^2}$ (distance between $\mathbf{0}$ and \mathbf{v})

Picture:

For any scalar c,

$$||c\mathbf{V}|| = |c|||\mathbf{V}||$$

Distance in R^n

The distance between \mathbf{u} and \mathbf{v} in \mathbf{R}^n :

$$dist(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|.$$

This agrees with the usual formulas for \mathbb{R}^2 and \mathbb{R}^3 . Let $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$.

Then
$$\mathbf{u} - \mathbf{v} = (u_1 - v_1, u_2 - v_2)$$
 and

dist(
$$\mathbf{u}, \mathbf{v}$$
) = $\|\mathbf{u} - \mathbf{v}\| = \|(u_1 - v_1, u_2 - v_2)\|$
= $\sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2}$

Orthogonal Vectors

$$[dist(\mathbf{u}, \mathbf{v})]^2 = \|\mathbf{u} - \mathbf{v}\|^2 = (\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v})$$

$$= (\mathbf{u}) \cdot (\mathbf{u} - \mathbf{v}) + (-\mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) =$$

$$= \mathbf{u} \cdot \mathbf{u} - \mathbf{u} \cdot \mathbf{v} + -\mathbf{v} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{v}$$

$$= \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\mathbf{u} \cdot \mathbf{v}$$

$$\Rightarrow \quad [\operatorname{dist}(\mathbf{u}, \mathbf{v})]^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\mathbf{u} \cdot \mathbf{v}$$

Similarly,

$$[dist(\mathbf{u}, -\mathbf{v})]^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 + 2\mathbf{u} \cdot \mathbf{v}$$

Since
$$[dist(\mathbf{u}, -\mathbf{v})]^2 = [dist(\mathbf{u}, \mathbf{v})]^2$$
, $\mathbf{u} \cdot \mathbf{v} = \underline{\hspace{1cm}}$.

Two vectors \mathbf{u} and \mathbf{v} are said to be **orthogonal** (to each other) if $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$.

Also note that if \mathbf{u} and \mathbf{v} are orthogonal, then $\|\mathbf{u} + \mathbf{v}\| = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$.

THEOREM 2 THE PYTHAGOREAN THEOREM

Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if $\|\mathbf{u} + \mathbf{v}\| = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$.

Section 6.2 Orthogonal Sets

A set of vectors $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ in \mathbb{R}^n is called an **orthogonal set** if $\mathbf{u}_i \cdot \mathbf{u}_j = 0$ whenever $i \neq j$.

EXAMPLE: Is
$$\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$
 an orthogonal set?

Solution: Label the vectors $\mathbf{u}_1, \mathbf{u}_2$, and \mathbf{u}_3 respectively. Then

$$\mathbf{u}_1 \cdot \mathbf{u}_2 =$$

$$\mathbf{u}_1 \cdot \mathbf{u}_3 =$$

$$\mathbf{u}_2 \cdot \mathbf{u}_3 =$$

Therefore, $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal set.

THEOREM 4

Suppose $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ is an orthogonal set of nonzero vectors in \mathbf{R}^n and $W = \operatorname{span}\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$. Then S is a linearly independent set and is therefore a basis for W.

Partial Proof: Suppose

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_p\mathbf{u}_p = \mathbf{0}$$

$$(c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_p\mathbf{u}_p) \cdot = \mathbf{0} \cdot$$

$$(c_1\mathbf{u}_1) \cdot \mathbf{u}_1 + (c_2\mathbf{u}_2) \cdot \mathbf{u}_1 + \dots + (c_p\mathbf{u}_p) \cdot \mathbf{u}_1 = \mathbf{0}$$

$$c_1(\mathbf{u}_1 \cdot \mathbf{u}_1) + c_2(\mathbf{u}_2 \cdot \mathbf{u}_1) + \dots + c_p(\mathbf{u}_p \cdot \mathbf{u}_1) = \mathbf{0}$$

$$c_1(\mathbf{u}_1 \cdot \mathbf{u}_1) = \mathbf{0}$$

Since $\mathbf{u}_1 \neq \mathbf{0}$, $\mathbf{u}_1 \cdot \mathbf{u}_1 > 0$ which means $c_1 = \underline{\hspace{1cm}}$.

In a similar manner, $c_2,...,c_p$ can be shown to by all 0. So S is a linearly independent set.

An **orthogonal basis** for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

EXAMPLE: Express $\mathbf{y} = \begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix}$ as a linear combination of the

orthogonal basis

$$\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}.$$

Solution:

$$\frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} = \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} = \frac{\mathbf{y} \cdot \mathbf{u}_3}{\mathbf{u}_3 \cdot \mathbf{u}_3} =$$

Hence

$$\mathbf{y} = \underline{\mathbf{u}}_1 + \underline{\mathbf{u}}_2 + \underline{\mathbf{u}}_3$$

Orthonormal Sets

A set of vectors $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ in \mathbf{R}^n is called an **orthonormal set** if it is an orthogonal set of unit vectors.

If $W = \text{span}\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$, then $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ is an orthonormal basis for W.

Recall that \mathbf{v} is a unit vector if $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{\mathbf{v}^T \mathbf{v}} = 1$.

Suppose $U = [\mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3]$ where $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthonormal set.

Then
$$U^TU=\left[egin{array}{c} \mathbf{u}_1^T \ \mathbf{u}_2^T \ \mathbf{u}_3^T \end{array}\right] \left[egin{array}{c} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{array}\right]=\left[egin{array}{c} \mathbf{u}_1^T \ \mathbf{u}_2^T \end{array}\right]$$

It can be shown that $UU^T = I$ also. So $U^{-1} = U^T$ (such a matrix is called an **orthogonal matrix**).

EXAMPLE: Let
$$\mathbf{u}_1 = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, and $\mathbf{y} = \begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix}$.

Observe that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal basis for $W = \operatorname{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$. Write \mathbf{y} as the sum of a vector in W and a vector orthogonal to W.

Solution:

$$\mathsf{proj}_{W}\mathbf{y} = \mathbf{\hat{y}} = (\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}})\mathbf{u}_{1} + (\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}})\mathbf{u}_{2}$$

$$= \begin{pmatrix} & & \\ & 0 & \\ & 1 & \end{bmatrix} + \begin{pmatrix} & & \\ & 0 & \\ & 1 & \end{bmatrix} = \begin{bmatrix} & 3 & \\ & 3 & \\ & 1 & \end{bmatrix}$$

$$\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} 0 \\ 3 \\ 10 \end{bmatrix} - \begin{bmatrix} 3 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ 0 \\ 9 \end{bmatrix}$$

EXAMPLE: Suppose $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ is a basis for a subspace W of \mathbf{R}^4 . Describe an orthogonal basis for W.

Solution: Let

$$\mathbf{v}_1 = \mathbf{x}_1 \text{ and } \mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1.$$
 $\{\mathbf{v}_1, \mathbf{v}_2\}$ is an orthogonal basis for Span $\{\mathbf{x}_1, \mathbf{x}_2\}$.

Let

$$\mathbf{v}_3 = \mathbf{x}_3 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2$$
(component of \mathbf{x}_3 orthogonal to Span $\{\mathbf{x}_1, \mathbf{x}_2\}$)

Note that \mathbf{v}_3 is in W. Why?

 $\Rightarrow \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthogonal basis for W.

THEOREM 11 THE GRAM-SCHMIDT PROCESS

Given a basis $\{\mathbf{x}_1, \dots, \mathbf{x}_p\}$ for a subspace W of \mathbf{R}^n , define

$$\mathbf{V}_{1} = \mathbf{X}_{1}$$

$$\mathbf{V}_{2} = \mathbf{X}_{2} - \frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{V}_{1}$$

$$\mathbf{V}_{3} = \mathbf{X}_{3} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{V}_{1} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{V}_{2}$$

$$\vdots$$

$$\mathbf{V}_{p} = \mathbf{X}_{p} - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{V}_{1} - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{V}_{2} - \dots - \frac{\mathbf{x}_{p} \cdot \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \cdot \mathbf{v}_{p-1}} \mathbf{V}_{p-1}$$

Then $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is an orthogonal basis for W and

$$\mathsf{Span}\{\mathbf{x}_1,\ldots,\mathbf{x}_p\} = \mathsf{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$$

EXAMPLE Suppose $\{x_1, x_2, x_3\}$, where

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix}, \mathbf{x}_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}, \mathbf{x}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
, is a basis for a

subspace W of \mathbb{R}^4 . Describe an orthogonal basis for W.

Solution:
$$\mathbf{v}_1 = \mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix}$$
 and

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix} - \frac{5}{14} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{9}{14} \\ \frac{9}{7} \\ -\frac{15}{14} \\ 0 \end{bmatrix}$$

Replace
$$\mathbf{v}_2$$
 with $14\mathbf{v}_2: \mathbf{v}_2 = 14$ $\begin{bmatrix} \frac{9}{14} \\ \frac{9}{7} \\ -\frac{15}{14} \\ 0 \end{bmatrix} = \begin{bmatrix} 9 \\ 18 \\ -15 \\ 0 \end{bmatrix}$

(optional step - to make \mathbf{v}_2 easier to work with in the next step)

$$\mathbf{v}_3 = \mathbf{x}_3 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2$$

$$\mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} - \frac{1}{14} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix} - \frac{9}{630} \begin{bmatrix} 9 \\ 18 \\ -15 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} - \frac{1}{14} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix} - \frac{1}{70} \begin{bmatrix} 9 \\ 18 \\ -15 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{4}{5} \\ -\frac{2}{5} \\ 0 \\ 1 \end{bmatrix}$$

Rescale (optional):
$$\mathbf{v}_3 = \begin{bmatrix} 4 \\ -2 \\ 0 \\ 5 \end{bmatrix}$$

Orthogonal Basis for W:

$$\{\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3}\} = \left\{ \begin{bmatrix} 1\\2\\3\\0 \end{bmatrix}, \begin{bmatrix} 9\\18\\-15\\0 \end{bmatrix}, \begin{bmatrix} 4\\-2\\0\\5 \end{bmatrix} \right\}$$

Orthonomal Basis

Suppose the following is an orthogonal basis for subspace

$$W = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} \right\} :$$

$$\{\mathbf{v}_1,\mathbf{v}_2\} = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\3 \end{bmatrix} \right\}$$

Rescale to form unit vectors:

$$\mathbf{u}_1 = \frac{1}{\|\mathbf{v}_1\|} \mathbf{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}$$

$$\mathbf{u}_2 = \frac{1}{\|\mathbf{v}_2\|} \mathbf{v}_2 = \frac{1}{3} \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Orthonormal basis for $W : \{\mathbf{u}_1, \mathbf{u}_2\}$