
Chapter 6

Quadrature

The term numerical integration covers several different tasks, including numerical
evaluation of integrals and numerical solution of ordinary differential equations. So
we use the somewhat old-fashioned term quadrature for the simplest of these, the
numerical evaluation of a definite integral. Modern quadrature algorithms auto-
matically vary an adaptive step size.

6.1 Adaptive Quadrature
Let f(x) be a real-valued function of a real variable, defined on a finite interval
a ≤ x ≤ b. We seek to compute the value of the integral,

∫ b

a

f(x)dx.

The word “quadrature” reminds us of an elementary technique for finding this
area—plot the function on graph paper and count the number of little squares that
lie underneath the curve.

In Figure 6.1, there are 148 little squares underneath the curve. If the area
of one little square is 3/512, then a rough estimate of the integral is 148× 3/512 =
0.8672.

Adaptive quadrature involves careful selection of the points where f(x) is sam-
pled. We want to evaluate the function at as few points as possible while approx-
imating the integral to within some specified accuracy. A fundamental additive
property of a definite integral is the basis for adaptive quadrature. If c is any point
between a and b, then

∫ b

a

f(x)dx =
∫ c

a

f(x)dx +
∫ b

c

f(x)dx.

The idea is that if we can approximate each of the two integrals on the right to
within a specified tolerance, then the sum gives us the desired result. If not, we
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Figure 6.1. Quadrature.

can recursively apply the additive property to each of the intervals [a, c] and [c, b].
The resulting algorithm will adapt to the integrand automatically, partitioning the
interval into subintervals with fine spacing where the integrand is varying rapidly
and coarse spacing where the integrand is varying slowly.

6.2 Basic Quadrature Rules
The derivation of the quadrature rule used by our Matlab function begins with
two of the basic quadrature rules shown in Figure 6.2: the midpoint rule and the
trapezoid rule. Let h = b− a be the length of the interval. The midpoint rule, M ,
approximates the integral by the area of a rectangle whose base has length h and
whose height is the value of the integrand at the midpoint:

M = hf

(
a + b

2

)
.

The trapezoid rule, T , approximates the integral by the area of a trapezoid with
base h and sides equal to the values of the integrand at the two endpoints:

T = h
f(a) + f(b)

2
.

The accuracy of a quadrature rule can be predicted in part by examining its
behavior on polynomials. The order of a quadrature rule is the degree of the lowest
degree polynomial that the rule does not integrate exactly. If a quadrature rule of
order p is used to integrate a smooth function over a small interval of length h, then
a Taylor series analysis shows that the error is proportional to hp. The midpoint
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Midpoint rule Trapezoid rule

Simpson’s rule Composite Simpson’s rule

Figure 6.2. Four quadrature rules.

rule and the trapezoid rule are both exact for constant and linear functions of x,
but neither of them is exact for a quadratic in x, so they both have order two. (The
order of a rectangle rule with height f(a) or f(b) instead of the midpoint is only
one.)

The accuracy of the two rules can be compared by examining their behavior
on the simple integral ∫ 1

0

x2dx =
1
3
.

The midpoint rule gives

M = 1
(

1
2

)2

=
1
4
.

The trapezoid rule gives

T = 1
(

0 + 12

2

)
=

1
2
.

So the error in M is 1/12, while the error in T is −1/6. The errors have oppo-
site signs and, perhaps surprisingly, the midpoint rule is twice as accurate as the
trapezoid rule.
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This turns out to be true more generally. For integrating smooth functions
over short intervals, M is roughly twice as accurate as T and the errors have opposite
signs. Knowing these error estimates allows us to combine the two and get a rule
that is usually more accurate than either one separately. If the error in T were
exactly −2 times the error in M , then solving

S − T = −2(S −M)

for S would give us the exact value of the integral. In any case, the solution

S =
2
3
M +

1
3
T

is usually a more accurate approximation than either M or T alone. This rule
is known as Simpson’s rule. It can also be derived by integrating the quadratic
function that interpolates the integrand at the two endpoints, a and b, and the
midpoint, c = (a + b)/2:

S =
h

6
(f(a) + 4f(c) + f(b)).

It turns out that S also integrates cubics exactly, but not quartics, so its order
is four.

We can carry this process one step further using the two halves of the interval,
[a, c] and [c, b]. Let d and e be the midpoints of these two subintervals: d = (a+c)/2
and e = (c+ b)/2. Apply Simpson’s rule to each subinterval to obtain a quadrature
rule over [a, b]:

S2 =
h

12
(f(a) + 4f(d) + 2f(c) + 4f(e) + f(b)).

This is an example of a composite quadrature rule. See Figure 6.2.
S and S2 approximate the same integral, so their difference can be used as an

estimate of the error:
E = (S2 − S ).

Moreover, the two can be combined to get an even more accurate approximation,
Q. Both rules are of order four, but the S2 step size is half the S step size, so S2 is
roughly 24 times as accurate. Thus, Q is obtained by solving

Q− S = 16(Q− S2).

The result is
Q = S2 + (S2 − S )/15.

Exercise 6.2 asks you to express Q as a weighted combination of the five function
values f(a) through f(e) and to establish that its order is six. The rule is known
as Weddle’s rule, the sixth-order Newton–Cotes rule, and also as the first step of
Romberg integration. We will simply call it the extrapolated Simpson’s rule because
it uses Simpson’s rule for two different values of h and then extrapolates toward
h = 0.
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6.3 quadtx, quadgui
The Matlab function quad uses the extrapolated Simpson’s rule in an adaptive
recursive algorithm. Our textbook function quadtx is a simplified version of quad.

The function quadgui provides a graphical demonstration of the behavior of
quad and quadtx. It produces a dynamic plot of the function values selected by the
adaptive algorithm. The count of function evaluations is shown in the title position
on the plot.

The initial portion of quadtx evaluates the integrand f(x) three times to
give the first, unextrapolated, Simpson’s rule estimate. A recursive subfunction,
quadtxstep, is then called to complete the computation.

function [Q,fcount] = quadtx(F,a,b,tol,varargin)
%QUADTX Evaluate definite integral numerically.
% Q = QUADTX(F,A,B) approximates the integral of F(x)
% from A to B to within a tolerance of 1.e-6.
%
% Q = QUADTX(F,A,B,tol) uses tol instead of 1.e-6.
%
% The first argument, F, is a function handle, an
% inline-object in MATLAB6, or an anonymous function
% in MATLAB7, that defines F(x).
%
% Arguments beyond the first four,
% Q = QUADTX(F,a,b,tol,p1,p2,...), are passed on to the
% integrand, F(x,p1,p2,..).
%
% [Q,fcount] = QUADTX(F,...) also counts the number of
% evaluations of F(x).
%
% See also QUAD, QUADL, DBLQUAD, QUADGUI.

% Default tolerance
if nargin < 4 | isempty(tol)

tol = 1.e-6;
end

% Initialization
c = (a + b)/2;
fa = feval(F,a,varargin{:});
fc = feval(F,c,varargin{:});
fb = feval(F,b,varargin{:});

% Recursive call
[Q,k] = quadtxstep(F, a, b, tol, fa, fc, fb, varargin{:});
fcount = k + 3;
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Each recursive call of quadtxstep combines three previously computed func-
tion values with two more to obtain the two Simpson’s approximations for a par-
ticular interval. If their difference is small enough, they are combined to return the
extrapolated approximation for that interval. If their difference is larger than the
tolerance, the recursion proceeds on each of the two half intervals.

function [Q,fcount] = quadtxstep(F,a,b,tol,fa,fc,fb,varargin)

% Recursive subfunction used by quadtx.

h = b - a;
c = (a + b)/2;
fd = feval(F,(a+c)/2,varargin{:});
fe = feval(F,(c+b)/2,varargin{:});
Q1 = h/6 * (fa + 4*fc + fb);
Q2 = h/12 * (fa + 4*fd + 2*fc + 4*fe + fb);
if abs(Q2 - Q1) <= tol

Q = Q2 + (Q2 - Q1)/15;
fcount = 2;

else
[Qa,ka] = quadtxstep(F, a, c, tol, fa, fd, fc, varargin{:});
[Qb,kb] = quadtxstep(F, c, b, tol, fc, fe, fb, varargin{:});
Q = Qa + Qb;
fcount = ka + kb + 2;

end

The choice of tolerance for comparison with the error estimates is important,
but a little tricky. If a tolerance is not specified as the fourth argument to the
function, then 10−6 is used as the default.

The tricky part is how to specify the tolerance in the recursive calls. How
small does the tolerance in each recursive call have to be in order for the final result
to have the desired accuracy? One approach would cut the tolerance in half with
each level in the recursion. The idea is that if both Qa and Qb have errors less than
tol/2, then their sum certainly has an error less than tol. If we did this, the two
statements

[Qa,ka] = quadtxstep(F, a, c, tol, fa, fd, fc, varargin{:});
[Qb,kb] = quadtxstep(F, c, b, tol, fc, fe, fb, varargin{:});

would have tol/2 in place of tol.
However, this approach is too conservative. We are estimating the error in

the two separate Simpson’s rules, not their extrapolated combination. So the actual
error is almost always much less than the estimate. More importantly, the subinter-
vals where the actual error is close to the estimate are usually fairly rare. We can
allow one of the two recursive calls to have an error close to the tolerance because
the other subinterval will probably have a much smaller error. For these reasons,
the same value of tol is used in each recursive call.
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Our textbook function does have one serious defect: there is no provision for
failure. It is possible to try to evaluate integrals that do not exist. For example,

∫ 1

0

1
3x− 1

dx

has a nonintegrable singularity. Attempting to evaluate this integral with quadtx
results in a computation that runs for a long time and eventually terminates with
an error message about the maximum recursion limit. It would be better to have
diagnostic information about the singularity.

6.4 Specifying Integrands
Matlab has several different ways of specifying the function to be integrated by a
quadrature routine. The inline facility is convenient for a simple, one-line formula.
For example, ∫ 1

0

1√
1 + x4

dx

can be computed with the statements

f = inline(’1/sqrt(1+x^4)’)
Q = quadtx(f,0,1)

Beginning with Matlab 7, inline objects will be superseded by a more pow-
erful construction known as anonymous functions. Inline objects are still allowed
in Matlab 7, but anonymous functions are preferred because they produce more
efficient code. The example becomes

f = @(x) 1/sqrt(1+x^4)
Q = quadtx(f,0,1)

If we want to compute ∫ π

0

sinx

x
dx,

we could try

f = inline(’sin(x)/x’)
Q = quadtx(f,0,pi)

Unfortunately, this results in a division by zero message when f(0) is evaluated
and, eventually, a recursion limit error. One remedy is to change the lower limit of
integration from 0 to the smallest positive floating-point number, realmin.

Q = quadtx(f,realmin,pi)

The error made by changing the lower limit is many orders of magnitude smaller
than roundoff error because the integrand is bounded by one and the length of the
omitted interval is less than 10−300.

Another remedy is to use an M-file instead of the inline function. Create a file
named sinc.m that contains the text
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function f = sinc(x)
if x == 0

f = 1;
else

f = sin(x)/x;
end

Then the statement

Q = quadtx(@sinc,0,pi)

uses a function handle and computes the integral with no difficulty.
Integrals that depend on parameters are encountered frequently. An example

is the beta function, defined by

β(z, w) =
∫ 1

0

tz−1(1− t)w−1dt.

Matlab already has a beta function, but we can use this example to illustrate how
to handle parameters. Create an inline function with three arguments.

F = inline(’t^(z-1)*(1-t)^(w-1)’,’t’,’z’,’w’)

Or use an M-file with a name like betaf.m.

function f = betaf(t,z,w)
f = t^(z-1)*(1-t)^(w-1)

As with all functions, the order of the arguments is important. The functions used
with quadrature routines must have the variable of integration as the first argument.
Values for the parameters are then given as extra arguments to quadtx. To compute
β(8/3, 10/3), you should set

z = 8/3;
w = 10/3;
tol = 1.e-6;

and then use

Q = quadtx(F,0,1,tol,z,w);

or

Q = quadtx(@betaf,0,1,tol,z,w);

The function functions in Matlab itself usually expect the first argument to
be in vectorized form. This means, for example, that the mathematical expression

sin x

1 + x2

should be specified with Matlab array notation.
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sin(x)./(1 + x.^2)

Without the two dots,

sin(x)/(1 + x^2)

calls for linear algebraic vector operations that are not appropriate here. The Mat-
lab function vectorize transforms a scalar expression into something that can be
used as an argument to function functions.

Many of the function functions in Matlab require the specification of an
interval of the x-axis. Mathematically, we have two possible notations, a ≤ x ≤ b
or [a, b]. With Matlab, we also have two possibilities. The endpoints can be given
as two separate arguments, a and b, or can be combined into one vector argument,
[a,b]. The quadrature functions quad and quadl use two separate arguments. The
zero finder, fzero, uses a single argument because either a single starting point or
a two-element vector can specify the interval. The ordinary differential equation
solvers that we encounter in the next chapter also use a single argument because a
many-element vector can specify a set of points where the solution is to be evaluated.
The easy plotting function, ezplot, accepts either one or two arguments.

6.5 Performance
The Matlab demos directory includes a function named humps that is intended
to illustrate the behavior of graphics, quadrature, and zero-finding routines. The
function is

h(x) =
1

(x− 0.3)2 + 0.01
+

1
(x− 0.9)2 + 0.04

.

The statement

ezplot(@humps,0,1)

produces a graph of h(x) for 0 ≤ x ≤ 1. There is a fairly strong peak near x = 0.3
and a more modest peak near x = 0.9.

The default problem for quadgui is

quadgui(@humps,0,1,1.e-4)

You can see in Figure 6.3 that with this tolerance, the adaptive algorithm has
evaluated the integrand 93 times at points clustered near the two peaks.

With the Symbolic Toolbox, it is possible to analytically integrate h(x). The
statements

syms x
h = 1/((x-.3)^2+.01) + 1/((x-.9)^2+.04) - 6
I = int(h)

produce the indefinite integral

I = 10*atan(10*x-3)+5*atan(5*x-9/2)-6*x
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Figure 6.3. Adaptive quadrature.

The statements

D = simple(int(h,0,1))
Qexact = double(D)

produce a definite integral

D = 5*atan(16/13)+10*pi-6

and its floating-point numerical value

Qexact = 29.85832539549867

The effort required by a quadrature routine to approximate an integral within
a specified accuracy can be measured by counting the number of times the integrand
is evaluated. Here is one experiment involving humps and quadtx.

for k = 1:12
tol = 10^(-k);
[Q,fcount] = quadtx(@humps,0,1,tol);
err = Q - Qexact;
ratio = err/tol;
fprintf(’%8.0e %21.14f %7d %13.3e %9.3f\n’, ...

tol,Q,fcount,err,ratio)
end
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The results are

tol Q fcount err err/tol

1.e-01 29.83328444174863 25 -2.504e-02 -0.250
1.e-02 29.85791444629948 41 -4.109e-04 -0.041
1.e-03 29.85834299237636 69 1.760e-05 0.018
1.e-04 29.85832444437543 93 -9.511e-07 -0.010
1.e-05 29.85832551548643 149 1.200e-07 0.012
1.e-06 29.85832540194041 265 6.442e-09 0.006
1.e-07 29.85832539499819 369 -5.005e-10 -0.005
1.e-08 29.85832539552631 605 2.763e-11 0.003
1.e-09 29.85832539549603 1061 -2.640e-12 -0.003
1.e-10 29.85832539549890 1469 2.274e-13 0.002
1.e-11 29.85832539549866 2429 -7.105e-15 -0.001
1.e-12 29.85832539549867 4245 0.000e+00 0.000

We see that as the tolerance is decreased, the number of function evaluations in-
creases and the error decreases. The error is always less than the tolerance, usually
by a considerable factor.

6.6 Integrating Discrete Data
So far, this chapter has been concerned with computing an approximation to the
definite integral of a specified function. We have assumed the existence of a Mat-
lab program that can evaluate the integrand at any point in a given interval.
However, in many situations, the function is only known at a finite set of points,
say (xk, yk), k = 1, . . . , n. Assume the x’s are sorted in increasing order, with

a = x1 < x2 < · · · < xn = b.

How can we approximate the integral

∫ b

a

f(x)dx?

Since it is not possible to evaluate y = f(x) at any other points, the adaptive
methods we have described are not applicable.

The most obvious approach is to integrate the piecewise linear function that
interpolates the data. This leads to the composite trapezoid rule

T =
n−1∑

k=1

hk
yk+1 + yk

2
,

where hk = xk+1 − xk. The trapezoid rule can be implemented by a one-liner.

T = sum(diff(x).*(y(1:end-1)+y(2:end))/2)
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trapezoid

area = 35.00

spline

area = 35.25

Figure 6.4. Integrating discrete data.

The Matlab function trapz also provides an implementation.
An example with equally spaced x’s is shown in Figure 6.4.

x = 1:6
y = [6 8 11 7 5 2]

For these data, the trapezoid rule gives

T = 35

The trapezoid rule is often satisfactory in practice, and more complicated
methods may not be necessary. Nevertheless, methods based on higher order inter-
polation can give other estimates of the integral. Whether or not they are “more
accurate” is impossible to decide without further assumptions about the origin of
the data.

Recall that both the spline and pchip interpolants are based on the Hermite
interpolation formula:

P (x) =
3hs2 − 2s3

h3
yk+1 +

h3 − 3hs2 + 2s3

h3
yk

+
s2(s− h)

h2
dk+1 +

s(s− h)2

h2
dk,

where xk ≤ x ≤ xk+1, s = x−xk, and h = hk. This is a cubic polynomial in s, and
hence in x, that satisfies four interpolation conditions, two on function values and
two on derivative values:

P (xk) = yk, P (xk+1) = yk+1,

P ′(xk) = dk, P ′(xk+1) = dk+1.

The slopes dk are computed in splinetx or pchiptx.
Exercise 6.20 asks you to show that

∫ xk+1

xk

P (x)dx = hk
yk+1 + yk

2
− h2

k

dk+1 − dk

12
.
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Consequently,

∫ b

a

P (x)dx = T −D,

where T is the trapezoid rule and

D =
n−1∑

k=1

h2
k

dk+1 − dk

12
.

The quantity D is a higher order correction to the trapezoid rule that makes use of
the slopes computed by splinetx or pchiptx.

If the x’s are equally spaced, most of the terms in the sum cancel each other.
Then D becomes a simple end correction involving just the first and last slopes:

D = h2 dn − d1

12
.

For the sample data shown in Figure 6.4, the area obtained by linear interpola-
tion is 35.00 and by spline interpolation is 35.25. We haven’t shown shape-preserving
Hermite interpolation, but its area is 35.41667. The integration process averages
out the variation in the interpolants, so even though the three graphs might have
rather different shapes, the resulting approximations to the integral are often quite
close to each other.

6.7 Further Reading
For background on quad and quadl, see Gander and Gautschi [3].

Exercises
6.1. Use quadgui to try to find the integrals of each of the following functions

over the given interval and with the given tolerance. How many function
evaluations are required for each problem and where are the evaluation points
concentrated?
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f(x) a b tol
humps(x) 0 1 10−4

humps(x) 0 1 10−6

humps(x) −1 2 10−4

sin x 0 π 10−8

cos x 0 (9/2)π 10−6√
x 0 1 10−8√
x log x eps 1 10−8

tan(sin x)− sin(tan x) 0 π 10−8

1/(3x− 1) 0 1 10−4

t8/3(1− t)10/3 0 1 10−8

t25(1− t)2 0 1 10−8

6.2. Express Q as a weighted combination of the five function values f(a) through
f(e) and establish that its order is six. (See section 6.2.)

6.3. The composite trapezoid rule with n equally spaced points is

Tn(f ) =
h

2
f(a) + h

n−2∑

k=1

f(a + kh) +
h

2
f(b),

where
h =

b− a

n− 1
.

Use Tn(f ) with various values of n to compute π by approximating

π =
∫ 1

−1

2
1 + x2

dx.

How does the accuracy vary with n?
6.4. Use quadtx with various tolerances to compute π by approximating

π =
∫ 1

−1

2
1 + x2

dx.

How do the accuracy and the function evaluation count vary with tolerance?
6.5. Use the Symbolic Toolbox to find the exact value of

∫ 1

0

x4(1− x)4

1 + x2
dx.

(a) What famous approximation does this integral bring to mind?
(b) Does numerical evaluation of this integral present any difficulties?

6.6. The error function erf(x) is defined by an integral:

erf(x) =
2√
π

∫ x

0

e−x2
dx.
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Use quadtx to tabulate erf(x) for x = 0.1, 0.2, . . . , 1.0. Compare the results
with the built-in Matlab function erf(x).

6.7. The beta function, β(z, w), is defined by an integral:

β(z, w) =
∫ 1

0

tz−1(1− t)w−1dt.

Write an M-file mybeta that uses quadtx to compute β(z, w). Compare your
function with the built-in Matlab function beta(z,w).

6.8. The gamma function, Γ(x), is defined by an integral:

Γ(x) =
∫ ∞

0

tx−1e−tdt.

Trying to compute Γ(x) by evaluating this integral with numerical quadrature
can be both inefficient and unreliable. The difficulties are caused by the
infinite interval and the wide variation of values of the integrand.
Write an M-file mygamma that tries to use quadtx to compute Γ(x). Compare
your function with the built-in Matlab function gamma(x). For what x is
your function reasonably fast and accurate? For what x does your function
become slow or unreliable?

6.9. (a) What is the exact value of

∫ 4π

0

cos2 x dx?

(b) What does quadtx compute for this integral? Why is it wrong?
(c) How does quad overcome the difficulty?

6.10. (a) Use ezplot to plot x sin 1
x for 0 ≤ x ≤ 1.

(b) Use the Symbolic Toolbox to find the exact value of

∫ 1

0

x sin
1
x

dx.

(c) What happens if you try

quadtx(inline(’x*sin(1/x)’),0,1)

(d) How can you overcome this difficulty?
6.11. (a) Use ezplot to plot xx for 0 ≤ x ≤ 1.

(b) What happens if you try to use the Symbolic Toolbox to find an analytic
expression for ∫ 1

0

xxdx?

(c) Try to find the numerical value of this integral as accurately as you can.
(d) What do you think is the error in the answer you have given?
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6.12. Let
f(x) = log(1 + x) log(1− x).

(a) Use ezplot to plot f(x) for −1 ≤ x ≤ 1.
(b) Use the Symbolic Toolbox to find an analytic expression for

∫ 1

−1

f(x)dx.

(c) Find the numerical value of the analytic expression from (b).
(d) What happens if you try to find the integral numerically with

quadtx(inline(’log(1+x)*log(1-x)’),-1,1)

(e) How do you work around this difficulty? Justify your solution.
(f ) Use quadtx and your workaround with various tolerances. Plot error
versus tolerance. Plot function evaluation count versus tolerance.

6.13. Let
f(x) = x10 − 10x8 + 33x6 − 40x4 + 16x2.

(a) Use ezplot to plot f(x) for −2 ≤ x ≤ 2.
(b) Use the Symbolic Toolbox to find an analytic expression for

∫ 2

−2

f(x)dx.

(c) Find the numerical value of the analytic expression.
(d) What happens if you try to find the integral numerically with

F = inline(’x^10-10*x^8+33*x^6-40*x^4+16*x^2’)
quadtx(F,-2,2)

Why?
(e) How do you work around this difficulty?

6.14. (a) Use quadtx to evaluate

∫ 2

−1

1
sin(

√
|t|)dt.

(b) Why don’t you encounter division-by-zero difficulties at t = 0?
6.15. Definite integrals sometimes have the property that the integrand becomes

infinite at one or both of the endpoints, but the integral itself is finite. In
other words, limx→a |f(x)| = ∞ or limx→b |f(x)| = ∞, but

∫ b

a

f(x) dx

exists and is finite.



Exercises 17

(a) Modify quadtx so that, if an infinite value of f(a) or f(b) is detected,
an appropriate warning message is displayed and f(x) is reevaluated at a
point very near to a or b. This allows the adaptive algorithm to proceed and
possibly converge. (You might want to see how quad does this.)
(b) Find an example that triggers the warning, but has a finite integral.

6.16. (a) Modify quadtx so that the recursion is terminated and an appropriate
warning message is displayed whenever the function evaluation count exceeds
10,000. Make sure that the warning message is only displayed once.
(b) Find an example that triggers the warning.

6.17. The Matlab function quadl uses adaptive quadrature based on methods
that have higher order than Simpson’s method. As a result, for integrating
smooth functions, quadl requires fewer function evaluations to obtain a spec-
ified accuracy. The “l” in the function name comes from Lobatto quadrature,
which uses unequal spacing to obtain higher order. The Lobatto rule used in
quadl is of the form

∫ 1

−1

f(x) dx = w1f(−1) + w2f(−x1) + w2f(x1) + w1f(1).

The symmetry in this formula makes it exact for monic polynomials of odd
degree f(x) = xp, p = 1, 3, 5, . . . . Requiring the formula to be exact for
even degrees x0, x2, and x4 leads to three nonlinear equations in the three
parameters w1, w2, and x1. In addition to this basic Lobatto rule, quadl
employs even higher order Kronrod rules, involving other abscissae, xk, and
weights, wk.
(a) Derive and solve the equations for the Lobatto parameters w1, w2, and
x1.
(b) Find where these values occur in quadl.m.

6.18. Let

Ek =
∫ 1

0

xkex−1 dx.

(a) Show that
E0 = 1− 1/e

and that
Ek = 1− kEk−1.

(b) Suppose we want to compute E1, . . . , En for n = 20. Which of the
following approaches is the fastest and most accurate?

• For each k, use quadtx to evaluate Ek numerically.

• Use forward recursion:
E0 = 1− 1/e;

for k = 2, . . . , n, Ek = 1− kEk−1.
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• Use backward recursion, starting at N = 32 with a completely inaccu-
rate value for EN :

EN = 0;

for k = N, . . . , 2, Ek−1 = (1− Ek)/k;

ignore En+1, . . . , EN .

6.19. An article by Prof. Nick Trefethen of Oxford University in the January/February
2002 issue of SIAM News is titled “A Hundred-dollar, Hundred-digit Chal-
lenge” [2]. Trefethen’s challenge consists of ten computational problems, each
of whose answers is a single real number. He asked for each answer to be com-
puted to ten significant digits and offered a $100 prize to the person or group
who managed to calculate the greatest number of correct digits. Ninety-four
teams from 25 countries entered the computation. Much to Trefethen’s sur-
prise, 20 teams scored a perfect 100 points and five more teams scored 99
points. A follow-up book has recently been published [1].
Trefethen’s first problem is to find the value of

T = lim
ε→0

∫ 1

ε

x−1 cos (x−1 log x) dx.

(a) Why can’t we simply use one of the Matlab numerical quadrature rou-
tines to compute this integral with just a few lines of code?

Here is one way to compute T to several significant digits. Express the
integral as an infinite sum of integrals over intervals where the integrand
does not change sign:

T =
∞∑

k=1

Tk,

where

Tk =
∫ xk−1

xk

x−1 cos (x−1 log x)dx.

Here x0 = 1, and, for k > 0, the xk’s are the successive zeros of cos (x−1 log x),
ordered in decreasing order, x1 > x2 > · · · . In other words, for k > 0, xk

solves the equation
log xk

xk
= −

(
k − 1

2

)
π.

You can use a zero finder such as fzerotx or fzero to compute the xk’s.
If you have access to the Symbolic Toolbox, you can also use lambertw to
compute the xk’s. For each xk, Tk can be computed by numerical quadrature
with quadtx, quad, or quadl. The Tk’s are alternately positive and negative,
and hence the partial sums of the series are alternately greater than and less
than the infinite sum. Moreover, the average of two successive partial sums
is a more accurate approximation to the final result than either sum by itself.
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(b) Use this approach to compute T as accurately as you can with a reasonable
amount of computer time. Try to get at least four or five digits. You may be
able to get more. In any case, indicate how accurate you think your result is.
(c) Investigate the use of Aitken’s δ2 acceleration

T̃k = Tk − (Tk+1 − Tk)2

Tk+1 − 2Tk + Tk−1
.

6.20. Show that the integral of the Hermite interpolating polynomial

P (s) =
3hs2 − 2s3

h3
yk+1 +

h3 − 3hs2 + 2s3

h3
yk

+
s2(s− h)

h2
dk+1 +

s(s− h)2

h2
dk

over one subinterval is
∫ h

0

P (s)ds = h
yk+1 + yk

2
− h2 dk+1 − dk

12
.

6.21. (a) Modify splinetx and pchiptx to create splinequad and pchipquad that
integrate discrete data using spline and pchip interpolation.
(b) Use your programs, as well as trapz, to integrate the discrete data set

x = 1:6
y = [6 8 11 7 5 2]

(c) Use your programs, as well as trapz, to approximate the integral

∫ 1

0

4
1 + x2

dx.

Generate random discrete data sets using the statements

x = round(100*[0 sort(rand(1,6)) 1])/100
y = round(400./(1+x.^2))/100

With infinitely many infinitely accurate points, the integrals would all equal
π. But these data sets have only eight points, rounded to only two decimal
digits of accuracy.

6.22. This program uses functions in the Spline Toolbox. What does it do?

x = 1:6
y = [6 8 11 7 5 2]
for e = [’c’,’n’,’p’,’s’,’v’]

disp(e)
ppval(fnint(csape(x,y,e)),x(end))

end
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Q = 0.3991 Q = 0.4075 Q = 0.4141

Figure 6.5. The area of a hand.

6.23. How large is your hand? Figure 6.5 shows three different approaches to
computing the area enclosed by the data that you obtained for exercise 3.3.
(a) Area of a polygon. Connect successive data points with straight lines and
connect the last data point to the first. If none of these lines intersect, the
result is a polygon with n vertices, (xi, yi). A classic, but little known, fact
is that the area of this polygon is

(x1y2 − x2y1 + x2y3 − x3y2 + · · ·+ xny1 − x1yn)/2.

If x and y are column vectors, this can be computed with the Matlab one-
liner

(x’*y([2:n 1]) - x([2:n 1])’*y)/2

(b) Simple quadrature. The Matlab function inpolygon determines which
of a set of points is contained in a given polygonal region in the plane. The
polygon is specified by the two arrays x and y containing the coordinates of
the vertices. The set of points can be a two-dimensional square grid with
spacing h.

[u,v] = meshgrid(xmin:h:xmax,ymin:h:ymax)

The statement

k = inpolygon(u,v,x,y)

returns an array the same size as u and v whose elements are one for the
points in the polygon and zero for the points outside. The total number of
points in the region is the number of nonzeros in k, that is, nnz(k), so the
area of the corresponding portion of the grid is

h^2*nnz(k)

(c) Two-dimensional adaptive quadrature. The characteristic function of the
region χ(u, v) is equal to one for points (u, v) in the region and zero for points
outside. The area of the region is

∫ ∫
χ(u, v)dudv.
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The Matlab function inpolygon(u,v,x,y) computes the characteristic func-
tion if u and v are scalars, or arrays of the same size. But the quadrature
functions have one of them a scalar and the other an array. So we need an
M-file, chi.m, containing

function k = chi(u,v,x,y)
if all(size(u) == 1), u = u(ones(size(v))); end
if all(size(v) == 1), v = v(ones(size(u))); end
k = inpolygon(u,v,x,y);

Two-dimensional adaptive numerical quadrature is obtained with

dblquad(@chi,xmin,xmax,ymin,ymax,tol,[],x,y)

This is the least efficient of the three methods. Adaptive quadrature expects
the integrand to be reasonably smooth, but χ(u, v) is certainly not smooth.
Consequently, values of tol smaller than 10−4 or 10−5 require a lot of com-
puter time.
Figure 6.5 shows that the estimates of the area obtained by these three meth-
ods agree to about two digits, even with fairly large grid sizes and tolerances.
Experiment with your own data, use a moderate amount of computer time,
and see how close the three estimates can be to each other.
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