
 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 1

Introduction to Monte Carlo Methods

Professor Richard J. Sadus

Centre for Molecular Simulation
Swinburne University of Technology

PO Box 218, Hawthorn Victoria 3122, Australia

Email: RSadus@swin.edu.au

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 2

Overview

This module comprises material for two lectures. The aim is to
introduce the fundamental concepts behind Monte Carlo methods.
The specific learning objectives are:

(a) To become familiar with the general scope of Monte Carlo
methods;

(b) To understand the key components of the Monte Carlo method;
(c) To understand to role of “randomness” in Monte Carlo;
(d) To understand the importance of careful choice of random

number generators;
(e) To be able to write simple Monte Carlo programs.

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 3

What is Meant by Monte Carlo Method?

• The term “Monte Carlo method” is used to embrace a wide range of
problem solving techniques which use random numbers and the
statistics of probability.

• Not surprisingly, the term was coined after the casino in the
principality of Monte Carlo. Every game in a casino is a game of
chance relying on random events such as ball falling into a particular
slot on a roulette wheel, being dealt useful cards from a randomly
shuffled deck, or the dice falling the right way!

• In principle, any method that uses random numbers to examine some
problem is a Monte Carlo method.

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 4

Examples of MC in Science

• Classical Monte Carlo (CMC) – draw samples from a probability
distribution to determine such things as energy minimum structures.

• Quantum Monte Carlo (QMC) – random walks are used to determine
such things as quantum-mechanical energies.

• Path-Integral Monte Carlo (PMC) – quantum statistical mechanical
integrals are evaluated to obtain thermodynamic properties.

• Simulation Monte Carlo (SMC) – algorithms that evolve
configurations depending on acceptance rules.

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 5

A Classic Example – The Calculation of π

• The value of π can be obtained by finding
the area of a circle of unit radius. The
diagram opposite represents such a circle
centred at the origin (O) inside of a unit
square.

• Trial “shots” (•) are generated in the OABC
square. At each trial, two independent
random numbers are generated on a uniform
distribution between 0 and 1. These random
numbers represent the x and y coordinates of
the shot. If N is the number of shots fired
and H is the number of hits (within the
circle):

O

C

A

B
y

x•
•

4 Area under CA 4
A r e a o f O A B C

H
N

π ×≈ =

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 6

The Calculation of π (contd)

A simple C function to calculate π

double calculate(int nTrials)
{

int hit = 0;
double x, y distanceFromOrigin;
for (int i = 1; i <= nTrials; i++)
{

x = myRand();
y = myRand();
distanceFromOrigin = sqrt(x*x +y*y);
if (distanceFromOrigin <= 1.0) hit++;

}
return 4*(double) hit/nTrials;

}

Pythagoras theorem

Random number between 0 and 1

Inside the quadrant

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 7

Another Example – Radioactive Decay

The kinetics of radioactive decay are first-order, which means that the
decay constant (λ) is independent of the amount of material (N). In
general:

The decay of radioactive material, although constant with time is
purely a random event. As such it can be simulated using random
numbers.

()
()
N t

N t t
λ∆ = −

∆

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 8

Radioactive Decay (contd)

C function to simulate radioactive decay

void RadioactiveDecay(int maxTime, int maxAtom, double lambda)
{
int numLeft = maxAtom, time, counter;
counter = maxAtom;
for (time = 0; time <= maxTime; time++)
{

for (atom = 1; atom <= numLeft; atom++)
if (myRandom() < lambda) counter--;

numLeft = counter;
printf((%d\t%f\n”, time, (double) numLeft/maxAtom);

}
}

Time loop

Atom loop

Atom decays

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 9

Monte Carlo Integration

The calculation of � is actually an example of “hit and miss” integration. It
relies on its success of generating random numbers on an appropriate interval.
Sample mean integration is a more general and accurate alternative to simple
hit and miss integration. The general integral

is rewritten:

where �(x) is an arbitrary probability density function. If a number of trials n
are performed by choosing a random number Rt from the distribution �(x) in
the range (xl, xu) then

()
u

l

x

x

I d x f x= ∫

() ()
()

u

l

x

x

f xI dx x
x

ρ
ρ

 =  
 ∫

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 10

Monte Carlo Integration (contd)

Where the brackets denote the average over all trails (this is standard
notation for simulated quantities). If we choose �(x) to be uniform,

The integral I can be obtained from:

()
()

t

t t r i a l s

f RI
Rρ

=

1()
() l u

u l

x x x x
x x

ρ = ≤ ≤
−

max

1max

() ()
t

u l
t

t

x xI f R
t =

−≈ ∑

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 11

Monte Carlo Integration (contd)

The general MC procedure for integrating a function f(x) is to
randomly obtain values of x within the upper and lower bounds of the
integrand, determine the value of the function, accumulate a sum of
these values and finally obtain an average by dividing the sum by the
number of trials.
In general, to calculate an integral of two independent values f(x,y)
over an area in the (x,y)-values:
(a) Choose random points in the area and determine the value of the

function at these points.
(b) Determine the average value of the function.
(c) Multiply the average value of the function by the area over which

the integration was performed.
This procedure can be easily extended to multiple integrals

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 12

Simple Monte Carlo Integration (contd)

MC integration is not usually a computationally viable alternative to
other methods of integration such as Simpson’s rule. However, it can
be of some value in solving multiple integrals. Consider, the following
multiple integral

This integral has an analytical solution (RHS), but many multiple
integrals are not so easily evaluated in which case MC integration is a
useful alternative.

2 2 2
2 2 2 ()

()
3

u
uuu u u

l l l l
l l

zyxx y z

x y z x y z

xyz x y z
x y z dxdydz

+ +
+ + =∫ ∫ ∫

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 13

Simple Monte Carlo Integration (contd)
The skeletal outline of simple C program to solve this integral is:

main()
{

int i;
double xL, xU, yU,yL, zU, zL x, y, z, xRange, yRange, zRange function, diff, sum = 0.0, accur = 0.001, oldVal = 0.0;
printf(“Enter xL “);
scanf(“%f”, &xL);
/* add similar statements for xU, yL, yU, zL and zU here */
xRange = xU – xL;
/* add similar statements for yRange, and zRange here */
do
{

i = i + 1;
x = myRand()*xRange + xL;
/* add similar statements fo y and z here */
function = x*x + y*y + z*z;
sum = sum + function;
integrand = (sum/i)*xRange*yRange*zRange;
diff = fabs(integrand – oldVal);
oldVal = integrand;
} while (diff > accur);
printf(“The integrand is %f”, integrand);

}

Returns random number between 0 - 1

Scale random number to suitable interval

Multiply by volume since it is a triple integral

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 14

Key Components of a Monte Carlo Algorithm

Having examined some simple Monte Carlo applications, it is timely to
identify the key components that typically compose a Monte Carlo algorithm.
They are:

• Random number generator
• Sampling rule
• Probability Distribution Functions (PDF)
• Error estimation

• In the remainder of this module will briefly examine the first three of these
features. Both sampling and PDF are discussed in greater detail in Module 2.
Error estimation is handled subsequently in the context of ensemble averaging
(Module 4).

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 15

Random Number Generators
• A reliable random number generator is critical for the success of a Monte

Carlo program. This is particularly important for Monte Carlo simulations
which typically involve the use of literally millions of random numbers. If the
numbers used are poorly chosen, i.e. if they show non-random behaviour over
a relatively short interval, the integrity of the Monte Carlo method is severely
compromised.

• In real life, it is very easy to generate truly random numbers. The lottery
machine does this every Saturday night! Indeed, something as simple as
drawing numbers of of a hat is an excellent way of obtain numbers that are
truly random.

• In contrast, it is impossible to conceive of an algorithm that results in purely
random numbers because by definition an algorithm, and the computer that
executes it, is deterministic. That is it is based on well-defined, reproducible
concepts.

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 16

Pseudo Random Number Generators

• The closest that can be obtained to a random number generator is a
pseudo random number generator.

• Most pseudo random number generators typically have two things in
common: (a) the use of very large prime numbers and (b) the use of
modulo arithmetic.

• Most language compilers typically supply a so-called random number
generator. Treat this with the utmost suspicion because they typically
generate a random number via a recurrence relationship such as:

1 (mod)j jR aR c m+ = +

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 17

Pseudo Random Number Generators (contd)

The above relationship will generate a sequence of random numbers
R1, R2 etc between 0 and m – 1. The a an c terms are positive
constants.

This is an example of a linear congruential generator. The advantage
of such a random number generator is that it is very fast because it
only requires a few operations. However, the major disadvantage is
that the recurrence relationship will repeat itself with a period that is
no greater than m.

If a, c and m are chosen properly, then the repetition period can be
stretched to its maximum length of m. However, m is typically not
very large. For example, in many C applications m (called
RAND_MAX) is only 32767.

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 18

Pseudo Random Number Generators (contd)

A number like 32767 seems like a large number but a moment thought
will quickly dispel this illusion. For example, a typical Monte Carlo
integration involves evaluating one million different points but if the
random numbers used to obtain these points repeat every 32767, the
result is that the same 32767 points are evaluated 30 times!

Another disadvantage is that the successive random numbers obtained
from congruential generators are highly correlated with the previous
random number.

The generation of random numbers is a specialist topic. However, a
practical solution is to use more than one congruential generators and
“shuffle” the results.

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 19

Pseudo Random Number Generators (contd)
The following C++ function (from Press et al.) illustrates the process of shuffling. I use this code in
all my Monte Carlo programs and I have found it to be very reliable.

double myRandom(int *idum)
{

/* constants for random number generator */

const long int M1 = 259200;
const int IA1 = 7141;
const long int IC1 = 54773;
const long int M2 = 134456;
const int IA2 = 8121;
const int IC2 = 28411;
const long int M3 = 243000;
const int IA3 = 4561;
const long int IC3 = 51349;

int j;
static int iff = 0;
static long int ix1, ix2, ix3;
double RM1, RM2, temp;
static double r[97];

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 20

Pseudo Random Number Generators (contd)

RM1 = 1.0/M1;
RM2 = 1.0/M2;

if(*idum < 0 || iff == 0) /*initialise on first call */
{
iff = 1;
ix1 = (IC1 - (*idum)) % M1; /* seeding routines */
ix1 = (IA1 *ix1 + IC1) % M1;
ix2 = ix1 % M2;
ix1 = (IA1 * ix1 + IC1) % M1;
ix3 = ix1 % M3;

for (j = 0; j < 97; j++)
{
ix1 = (IA1 * ix1 + IC1) % M1;
ix2 = (IA2 * ix2 + IC2) % M2;
r[j] = (ix1 + ix2 * RM2) * RM1;
}
*idum = 1;

}

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 21

Pseudo Random Number Generators (contd)

/*generate next number for each sequence */

ix1 = (IA1 * ix1 + IC1) % M1;
ix2 = (IA2 * ix2 + IC2) % M2;
ix3 = (IA3 * ix3 + IC3) % M3;

/* randomly sample r vector */

j = 0 + ((96 * ix3) / M3);
if (j > 96 || j < 0)

cout <<"Error in random number generator\n";

temp = r[j];

/* replace r[j] with next value in the sequence */

r[j] = (ix1 + ix2 * RM2) * RM1;

return temp;
}

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 22

Sampling

• Monte Carlo works by using random numbers to sample the “solution
space” of the problem to be solved. In our examples of the calculation
of �, simulation of radioactive decay and Monte Carlo integration we
employed a “simple” sampling technique in which all points were
accepted with equal probability.

• Such simple sampling is inefficient because we must obtain many
points to obtain an accurate solution. Indeed the accuracy of our
solution is directly proportional to the number of points sampled.

• However, not all points in the solution-space contribute equally to the
solution. Some are of major importance, whereas others could be
safely ignored without adversely affecting the accuracy of our
calculation.

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 23

Sampling (contd)
• In view of this, rather than sampling the entire region randomly, it

would be computationally advantageous to sample those regions which
make the largest contribution to the solution while avoiding low-
contributing regions. This type of sampling is referred to as
“importance sampling.”

To illustrate the difference between simple sampling and importance
sampling, consider the difference between estimating an integral via
simple sampling:

and using importance sampling

1
()

N

e s t i
i

I f x
N

= ∑

() / ()
N

e s t i i
i

I f x p x= ∑

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 24

Sampling (contd)

In the later case, each point is chosen in accordance with the
anticipated importance of the value to the function and the contribution
it makes weighted by the inverse of the probability (p) of choice.
Unlike the simple sampling scheme, the estimate is no longer a simple
average of all points sampled but it is a weighted average.

• It should be noted that this type of sampling introduces a bias which
must be eliminated. Importance sampling is discussed in greater detail
in Module 2.

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 25

Probability Distribution Functions

• As illustrated above, Monte Carlo methods work by sampling
according to a probability distribution function (PDF).

• In the previous examples, using simple sampling, we have in effect
been sampling from a “uniform distribution function” in which every
selection is made with equal probability.

• In statistics, the most important PDF is probably the Gaussian or
Normal Distribution:

2 2() / 2

()
2

xef x
µ σ

π σ

− −

=

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 26

Probability Distribution Functions (contd)

where µ is the mean of the distribution and σ2 is the variance.

This function has the well-known “bell-shape” and gives a good
representation of such things as the distribution of the intelligence
quotient (IQ) in the community centred on a “normal” value of IQ =
100 (hopefully we are a biased sample with IQs to the right of this
value!).

• In scientific applications, a well-known distribution function is the
Botlzmann distribution, which relates the fraction of particles Ni with
energy Ei to the temperature (T) and Boltzmann’s constatnt (k):

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 27

Probability Distribution Functions (contd)

Indeed, this distributed will play a central role in many of the Monte
Carlo algorithms presented in subsequent modules.

// iE kT
iN N e−=

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 28

Problems

1. Consider the function f(x) = x10-1. Use a simple sampling MC
technique to integrate this function between x = a and x = 2.

2. Implement the MC program to calculate π using the standard rand()
function in place of myRand(). Compare the accuracy of your results
after 30,000, 100000 and 100000 samples. Does the accuracy
improve? Hint: depending on the compiler, you may have to convert
the numbers to lie on the 0 – 1 range.

3. Repeat problem (2) using myRand() and compare the results.

4. Generalise the method used to solve the three-dimensional integral to
solve the following 10-D integral:

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 29

Problems (continued)

5. Write your own simple function to generate random numbers using the
linear congruent method. Test your generator with the values a = 111,
c = 2, M = 256 and R1 = 1 and determine the repetition period.

6. A simple random number generator can be obtained using the
following relationship:

Where p = 17, q = 5 are “off-set” values. Write a function to compute
random numbers in this way and compare the output with the random
numbers generated your compiler’s random number generator.

1 1 1
2

1 2 10 1 2 10
0 0 0

... (......)I dx dx dx x x x= + + +∫ ∫ ∫

n n p n qR R R− −=

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 30

Problems (continued)

7. Sometimes, it is useful to generate random numbers not uniformly but
according to some pre-determined distribution. Numbers on the
Guassian distribution can be generated via Box-Muller method. This
involves generating two numbers (x1 and x2) on a uniform distribution
and transforming them using:

Write a function that calculates numbers on the Guassian distribution.

1 1 2

2 1 2

(2ln) cos(2)

(2ln) sin(2)

y x x

y x x

π

π

= −

= −

 R. J. Sadus, Centre for Molecular Simulation, Swinburne University of Technology 31

Reading Material
The material covered in this module is discussed in greater detail in the
following books:

M.P. Allen and D. J. Tildesley, Computer Simulation of Liquids, OUP, Oxford,
1987, pages 110-112.
D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical
Physics, CUP, 2000, pages 1-4 and 48-53.
D. Frenkel and B. Smit, Understanding Molecular Simulation: From
Algorithms to Applications, Academic Press, San Diegio, 1996, pages 19-28.
R.J. Sadus, Molecular Simulation of Fluids: Theory, Algorithm and Object-
Orientation, Elsevier, Amsterdam, 1999.
W.H. Press, B.F. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical
Recipes in C: The Art of Scientific Computing, CUP, Cambridge, 1988, pages
204-213.
R.H. Landau and M.J. Páez, Computational Physics: Problem Solving with
Computers, Wiley, New York, 1997, pages 93-108.

