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Problems involving ODEs can always be
reduced to a set of first order differential
equations. For example,

d?y ‘ e
dl | Q(a’)a o I“(ZL)

By introducing a new variable z, this can
be rewritten as:

dy
Iy ()

T~ (@) - qla)2()

This exemplifies the procedure for an arbitrary ODE.The
usual choice for the new variables is to let them just be
derivatives of each other and of the original variable.
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Let common sense be your guide: If you find
that the original variables are smooth in a
solution, while your auxiliary variables are

doing crazy things, then figure out why and
choose different auxiliary variables.
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The generic problem 1n ordinary differential equations 1s thus reduced to the
study of a set of N coupled first-order differential equations for the functions

yi, © = 1,2,..., N, having the general form
dy; (x . ;
/(1’(1 ) = filz,y1....,YN), i =1,..., N

where the functions f; on the right-hand side are known.
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|l orenz Oscillator

The equations that govern the Lorenz oscillator are:

dx -

- = oy -7

Y o 2(p-2) -y ’
7 . 2 |
dz . |
o =Y = 3z

where o is called the Prandtl number and p is called the Rayleigh number. All G, p,

B> 0, butusually o =10, B =8 / 3 and p is varied. The system exhibits chaotic

behavior for p = 28 but displays knotted periodic orbits for other values of p. For
example, with p = 99.96 it becomes a T(3,2) torus knot.
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—k{h [H][O3]
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Non-linearities may exist

—kPh[H][O3]  +kph[Cl][Hy] +k5% [Ho] [OH]
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® |s a problem involving ODEs completely
specified by its equations!?
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® |s a problem involving ODEs completely
specified by its equations!?

® NO! Even more crucial in determining how
to attack the problem numerically is the
nature of the boundary conditions. Boundary
conditions are algebraic conditions on the
values of the functions y; in:
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Sensitive dependence on the initial condition

Time t=1 (Enlarge) Time t=2 (Enlarge) Time t=3 (Enlarge)

These figures — made using p=28, 0 = 10 and B = 8/3 — show three time segments of the 3-D evolution of 2 trajectories (one in blue, the
other in yellow) in the Lorenz attractor starting at two initial points that differ only by 107 in the x-coordinate. Initially, the two trajectories
seem coincident (only the yellow one can be seen, as it is drawn over the blue one) but, after some time, the divergence is obvious.
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® |n general, the boundary conditions can be
specified at discrete points, but do not hold
between those points, i.e. are not
preserved automatically by the differential
equations.

® Boundary conditions may be as simple as
requiring that certain variables have certain
numerical values, or as complicated as a set
of non-linear algebraic equations among the
variables.
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® Usually it is the nature of the boundary
conditions that determines which
numerical methods will be feasible.
Boundary conditions divide into two broad

categories.
P

e In initial value problems all the vy, are given at some starting value z ., and
1t 1s desired to find the y;’s at some final point z ¢, or at some discrete list
of points (for example, at tabulated intervals).

e In two-point boundary value problems, on the other hand, boundary
conditions are specified at more than one x. Typically, some of the
conditions will be specified at x; and the remainder at .

.
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The underlying idea of any routine for solving the
initial value problem is always this: Rewrite the dy’s

and dx’s in

as finite steps in Ay and Ax, and multiply the
equations by AX. This gives algebraic formulas for
the change in the functions when the independent
variable, x, is “stepped” by one “stepsize” AX. In
the limit of making the stepsize very small
(AX—0), a good approximation to the underlying
differential equation is achieved.
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The underlying idea of any routine for solving the
initial value problem is always this: Rewrite the dy’s

and dx’s in

dy;(2)
dx

:f'i(fl7af‘/1>---,~.3/N), 1:1,,A\T

as finite steps in Ay and Ax, and multiply the
equations by AX. This gives algebraic formulas for
the change in the functions when the independent
variable, x, is “stepped” by one “stepsize” AX. In
the limit of making the stepsize very small
(AX—0), a good approximation to the underlying
differential equation is achieved.
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Literal implementation of this procedure
results in Euler’s method, which is however
not recommended for any practical use.
Euler’s method is conceptually important,
however; one way or another practical
methods all come down to the same idea:

Add small increments to your functions
corresponding to derivatives (right-hand sides
of the equations) multiplied by stepsizes.

Monday, October 1, 12



Euler integration

From Wikipedia, the free encyclopedia
(Redirected from Euler's method)

In mathematics and computational science, Euler integration (or the Euler method) is a
numerical procedure for solving ordinary differential equations (ODEs) with a given initial value.
It is the most basic kind of explicit numerical integration for ordinary differential equations.

Derivation [edit]

We want to approximate the solution of the initial value problem

!
y (t) = f(t,y(t)), y(to) = Yo,
by using the first two terms of the Taylor expansion of y. One step of Euler Integration from f,

tO tn+1 = rn + hiS

Ynt1 = Yn + RS (tn, Yn)-
The Euler method of integration is explicit, i.e. the solution y, .,  is an explicit function of y; for
1<n-
While Euler integration integrates a first order ODE, any ODE of order N can be represented as
a first-order ODE in more than one variable by introducing N — 1 further variables, y', y", ...,

y(M, and formulating N first order equations in these new variables. The Euler method can be

applied to the vector y () = (y(t), y'(t), y"(t), " y(N)(t))to integrate the

higher-order system.

Leonhard Euler

Portrait by Johann Georg Brucker

Born

Died

Residence

Nationality
Field

Institution

Alma mater

Religion

April 15, 1707
Basel, Switzerland

September 7, 1783
St Petersburg, Russia

Prussia

Russia

Switzerland

Swiss

Mathematics and physics

Imperial Russian Academy of Sciences
Berlin Academy

University of Basel

Lutheran

Monday, October 1, 12



7.4 Single-Step Methods

The simplest numerical method for the solution of initial value problems is Fuler’s
method. It uses a fixed step size h and generates the approximate solution by

Ynt+1 = Yn + hf(tna yn)a
tn+1 — tn + h

The MATLAB code would use an initial point t0, a final point tfinal, an initial
value yO0, a step size h, and an inline function or function handle £. The primary
loop would simply be

t = t0;

y = y0;

while t <= tfinal
y = y + hxfeval(f,t,y)
t=t+h

end
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For example, the second-order differential equation describing a simple har-
monic oscillator
E(t) = —z(t)

becomes two first-order equations. The vector y(¢) has two components, z(¢) and

its first derivative z(t):
o-[%]

Using this vector, the differential equation is
|2
y(t) = _ —z(t) J
- ya(t) ]
—y(t) |

The MATLAB function defining the differential equation has ¢ and y as input
arguments and should return f(¢,y) as a column vector. For the harmonic oscillator,
the function is an M-file containing

function ydot = harmonic(t,y)
ydot = [y(2); -y(1)]
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Homework 4

® Starting from the
conditions below write
a Euler integration for
the simple harmonic
oscillator to produce
the plot on the right.

® Why are the solutions
diverging?

$ Initial time
t0=0;

$ Final time
tfinal=20;

$ Initial location
y0=[1;0];

t Symbols

line={'~k' '=r' '=qg' '=b' '=¢' '=m' '=y' '

Location

Harmonic Oscillator

r—
; 7=\ ;
W)
: , / N\
/ \
\ | \
L \ /
\
; 7
—
/
| | | | |
2 4 6 8 10 12 14 16 18
Time
'~<~<(_I L I 'l"'};
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Homework 4

Solve the same
ODEs by calling
ODE23, ODE45,
ODEI I 3 overlay

on the Euler
solutions like on
the plot to the
right.

Location

Harmonic Oscillator
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clear;clc

% Initial time
t0=0;

% Final time
tfinal=20;

% Initial location
yo=[1;0];

% Symbols
lineg{'-kl '-rl l-gl l-b' I-C' l-m -y '--kl --r

for jsize=l:length(line)

% step size
h=0.01*jsize;

% initial conditions
t=t0;
y=y0;

% Write Euler Solution here

% Plot Euler solution for this time step
linestyle=char(line{jsize});
plot(tplot,yplot,linestyle);
clear tplot yplot
if jsize==]

hold on
end

end
hold off

xlabel( 'Time', 'FontSize',17)

ylabel( 'Location', 'FontSize',17)
title('Harmonic Oscillator', 'FontSize',20)
grid on

xlim([0 20])

fn='sho-euler';
wrplotepsijpeg(£fn)

A ¥
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As the step size increased so did the error! Why!?

Harmonic Oscillator

Location
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As the step size increased so did the error! Why!?

Harmonic Oscillator

Location

Time
The slope changes over our time step, but in Euler’s
method we assume it is constant.
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Derivation edit]

We want to approximate the solution of the initial value problem

/
Y (t) - f(tay(t))a y(t(l) = Yo,

by using the first two terms of the Taylor expansion of y. One step of Euler Integration from { t0 { ., = { + Ais
Yn+1 = Yn + Af (tna y'n) .

The Euler method of integration is explicit, i.e. the solution y_, , is an explicit function of y,for 7 S n.

While Euler integration integrates a first order ODE, any ODE of order N can be represented as a first-order ODE in more than one
variable by introducing N - 1 further variables, y, y", ..., ¥, and formulating  first order equations in these new variables. The Euler

method can be applied to the vector y () = (y(¢), y’(t), y"(t), s y(N)(t))to integrate the higher-order system.
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Derivation edit]

We want to approximate the solution of the initial value problem

y' (t) = f(t,y(t)), y(to) = yo,

by using the| first two terms|of the Taylor expansion of y. One step of Euler Integration from { t0 {,,, = {, + #1is

Ynt1 = Yn + hf(tn, yn)-

The Euler method of integration is explicit, i.e. the solution y_, , is an explicit function of y,for 7 S n.

While Euler integration integrates a first order ODE, any ODE of order N can be represented as a first-order ODE in more than one
variable by introducing N - 1 further variables, y, y", ..., ¥, and formulating  first order equations in these new variables. The Euler

method can be applied to the vector y (1) = (y(¢), y’(t), y"(t), s y(N)(t))to integrate the higher-order system.
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Error [edit]

The magnitude of the errors arising from Euler integration can be demonstrated by comparison with a Taylor expansion of y. If we assume
that f(t) and y(t) are known exactly at a time §, then Euler integration gives the approximate solution attime § + /2 as:

y(to + h) = y(to) + hf(to,y(to))-

In comparison, the Taylor expansion in i about 1, gives:

! 1 2. " K
y(to + h) = y(to) + hy'(to) + §h“y (to) + O(R?).

The error introduced by Euler integration is given by the difference between these equations:

]' 2 N g
—§h.“y (to) + O(R?).

For small i, the dominant error per step is proportional to #2. To solve the problem over a given range of r, the number of steps needed is
proportional to 1 /4 so itis to be expected that the total error at the end of the fixed time will be proportional to / (error per step times
number of steps). For this reason, Euler's method is said to be first order. This makes Euler integration less accurate (for small #) than
other higher-order techniques such as Runge-Kutta methods and linear multistep methods.

Euler integration can also be numerically unstable, especially for stiff equations. This limitation—along with its slow convergence of error
with ~—means that Euler integration is not often used, except as a simple example of numerical integration.
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ODE Solvers

® There are three types of solvers:
® Runge-Kutta Methods

® Richardson extrapolation and in
particular the Burlish-Stoer method

® Predictor corrector methods
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ODE Solvers

1. Runge-Kutta methods propagate a solution over an interval by combining
the information from several Euler-style steps (each involving one evaluation of the
right-hand f’s), and then using the information obtained to match a Taylor series
expansion up to some higher order.

2. Richardson extrapolation uses the powerful idea of extrapolating a computed
result to the value that would have been obtained if the stepsize had been very
much smaller than it actually was. In particular, extrapolation to zero stepsize 1s
the desired goal. The first practical ODE integrator that implemented this 1dea was
developed by Bulirsch and Stoer, and so extrapolation methods are often called
Bulirsch-Stoer methods.

3. Predictor-corrector methods store the solution along the way, and use
those results to extrapolate the solution one step advanced; they then correct the
extrapolation using derivative information at the new point. These are best for
very smooth functions.
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Which method should | use?

Runge-Kutta 1s what you use when (1) you don’'t know any better, or (1) you
have an intransigent problem where Bulirsch-Stoer 1s failing, or (111) you have a trivial
problem where computational etficiency 1s of no concern. Runge-Kutta succeeds
virtually always; but it 1s not usually fastest, except when evaluating f; 1s cheap and
moderate accuracy (< 107°) is required. Predictor-corrector methods, since they
use past information, are somewhat more difficult to start up, but, for many smooth
problems, they are computationally more efficient than Runge-Kutta. In recent years
Bulirsch-Stoer has been replacing predictor-corrector in many applications, but it
1S too soon to say that predictor-corrector 1s dominated in all cases. However, it
appears that only rather sophisticated predictor-corrector routines are competitive.
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Which method should | use?

Each of the three types of methods can be organized to monitor internal
consistency. This allows numerical errors which are inevitably introduced into
the solution to be controlled by automatic, (adaptive) changing of the fundamental
stepsize. We always recommend that adaptive stepsize control be implemented,
and we will do so below.

In general, all three types of methods can be applied to any initial value
problem. Each comes with 1ts own set of debits and credits that must be understood

before 1t 1s used.
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Carl Runge

Died

Residence
Nationality
Field
Institution

Alma mater

Car David Tolmé Runge

August 30, 1356
Bremen, Gennany

January 3, 1927
Gottingen, Genmnany

N G ermany

B G ernan

kathematician and physicist
University of Hannover

Betin University

Academic advisor Kad Weierstrass

Emst Kurnmer

-

Notable students Max Bom | & &

Known for

Runge-Kuttamethod
Runge's phenomenon

Martin Kutta

Born: 3 Nov 1867 in Pitschen, Upper Silesia (now Byczyna, Poland)
Died: 25 Dec 1944 in Fiirstenfeldbruck, Germany
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The formula for the Euler method 1s

y'n.-l-l — l/n + h'f(il"'n.-, yn) (1611)

which advances a solution from z,, to x,,+1 = x,,+ h. The formula is unsymmetrical:
It advances the solution through an interval /., but uses derivative information only
at the beginning of that interval (see Figure 16.1.1). That means (and you can verify
by expansion in power series) that the step’s error is only one power of / smaller

than the correction, 1.e O(hz) added to (16.1.1).

v(x) @ .-
."»
- s ’
-
-
-
-
@9/7'
| | |
| | |
X1 X2 X3 X

Figure 16.1.1. Euler's method. In this simplest (and least accurate) method for integrating an ODE,
the derivative at the starting point of each interval is extrapolated to find the next function value. The

method has first-order accuracy.
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Consider, however, the use of a step like (16.1.1) to take a “trial” step to the
midpoint of the interval. Then use the value of both » and y at that midpoint

to compute the “real” step across the whole interval. Figure 16.1.2 illustrates the
idea. In equations,

k1 = hf(ivn-. yn)
1‘72 = hf (-'1"71 T %]Z, Yn + %kl) (1612)
Yn+1 = Un + k?. + 0(123)

As indicated in the error term, this symmetrization cancels out the first-order error
term, making the method second order. [A method is conventionally called nth

order if its error term is O(h"™1).] In fact, (16.1.2) is called the second-order
Runge-Kutta or midpoint method.

y(x)

|
I
X1 X2 X3 X

Figure 16.1.2. Midpoint method. Second-order accuracy is obtained by using the initial derivative at
each step to find a point halfway across the interval, then using the midpoint derivative across the full

width of the interval. In the figure, filled dots represent final function values, while open dots represent
function values that are discarded once their derivatives have been calculated and used.
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By far the most often used 1s the classical fourth-order Runge-Kutta formula,

which has a certain sleekness of organization about it:

kl = h-f(wnﬁ y'n-)

h k

ko = hf(x, + é Yn + 71)
h b

k3 = ]lf(il"n + §1 Yn + 72)

ky = h’f(il"n + I, yp + k3)

k k. k: k .
Un+1 = Yn + Fl -+ ?;2 -+ 33 -+ f -+ O(ho)

V
Jn
~
~
~
~
~ ’)
-~
\ —
~
~
~

~

~
-~
~
-~
~
~
; -~
~
3 ~

(16.1.3)

Figure 16.1.3. Fourth-order Runge-Kutta method. In each step the derivative 1s evaluated four times:
once at the initial point, twice at trial midpoints, and once at a trial endpoint. From these derivatives the

final function value (shown as a filled dot) 1s calculated. (See text for details.)
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\ extrapolation
to == steps
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1
X x+H

—
—
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Figure 16.4.1. Richardson extrapolation as used in the Bulirsch-Stoer method. A large interval H 1s
spanned by different sequences of finer and finer substeps. Their results are extrapolated to an answer
that 1s supposed to correspond to infinitely fine substeps. In the Bulirsch-Stoer method, the integrations

are done by the modified midpoint method, and the extrapolation technique is rational function or
polynomial extrapolation.

Monday, October 1, 12



Stiff Sets of Equations

As soon as one deals with more than one first-order differential equation, the
possibility of a stiff set of equations arises. Stiffness occurs in a problem where
there are two or more very different scales of the independent variable on which
the dependent variables are changing.

Stiffness is a subtle, difficult, and important concept in the numerical solution of
ordinary differential equations. It depends on the differential equation, the initial
conditions, and the numerical method. Dictionary definitions of the word “stiff”
involve terms like “not easily bent,” “rigid,” and “stubborn.” We are concerned
with a computational version of these properties.

A problem is stiff if the solution being sought varies slowly, but there are
nearby solutions that vary rapidly, so the numerical method must take
small steps to obtain satisfactory results.

Stiffness is an efficiency issue. If we weren’t concerned with how much time a
computation takes, we wouldn’t be concerned about stiffness. Nonstiff methods
can solve stiff problems; they just take a long time to do it.
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"r

Figure 16.6.1. Example of an instability encountered in integrating a stiff equation (schematic). Here
it 1s supposed that the equation has two solutions, shown as solid and dashed lines. Although the initial
conditions are such as to give the solid solution, the stability of the integration (shown as the unstable
dotted sequence of segments) 1s determined by the more rapidly varying dashed solution, even after that
solution has effectively died away to zero. Implicit integration methods are the cure.
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Exercise

Look at Matlab help: doc ode23

Do the three examples

Open the document odes .pdf and read
about the Lorenz attractor in section /7.8

Look at the Lorenz attractor example
lorenzgul.m

Read about stiff systems in section /7.9

Read chapter |7 of Numerical Recipes
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