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ABSTRACT 

In adaptive signal processing the principle of exponen- 
tially weighted recursive least-squares plays a major role in 
developing various estimation algorithms. I t  is based on 
the concept of discounting of old measurements and allows 
for better performance in problems with time-varying sig- 
nals and signals in nonstationary noise. In this paper we 
show how this concept can be combined with the Bayesian 
methodology. We propose that the discounting of old mea- 
surements within the Bayesian framework be implemented 
by employing particle filters. The main idea is presented 
by way of a simple example. The methodology is very at- 
tractive and can be used in a very wide range of scenar- 
ios including ones that involve highly nonlinear models and 
non-Gaussian noise. 

1. INTRODUCTION 

Adaptive signal processing is a very important part of sta- 
tistical signal processing and has applications in diverse ar- 
eas including communications, controls, radar, sonar, and 
biomedical engineering. A wide variety of signal process- 
ing problems involve nonstationary signals or time-varying 
models, and the standard approach to resolving them in- 
volves application of adaptive filters. The number of appli- 
cations where they have been successfully employed is very 
large, and examples of it such as linear prediction, channel 
equalization, beamforming, interference cancellation, and 
system identification abound in many standard textbooks 

A big class of adaptive filtering methods is based on 
the principle of recursive least-squares (RLS). In applica- 
tions where the signals have time-varying parameters or the 
noise is nonstationary, and the time-varying nature of the 
unknowns is not known, the RLS algorithm is modified to 
exponentially weighted RLS. The objective of the exponen- 
tial weighting is to give more weight to more recent than 
to older observations. Here we show how this idea can be 
used within the framework of Bayesian methodology. It is 
shown that if the equation that represents the model of the 
observations is extended with a state equation in the form 
of a random walk model, we obtain the effect of discounting 
of old measurements. 

The objective of this work is twofold. First and fore- 
most, we want to extend the idea of discounted measure- 
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ments to Bayesian methods. Second, the intention is to 
exploit this approach for solving as wide range of prob- 
lems as possible. This can be achieved if we implement the 
adaptive processing scheme with discounted measurements 
by particle filters [4], [ 5 ] .  Particle filters are based on track- 
ing posterior densities of interest by propagating samples 
(particles) that are drawn from these densities. If particles 
from the posteriors are available at any instant of time, all 
kinds of estimators can be constructed for extracting de- 
sired information. Expectations of various functions can 
be estimated, MMSE estimates can be easily obtained, and 
uncertainties about the estimates can readily be quantified. 

In Section 2 we 
present the main idea by working on a very simple example. 
Then, in Section 3, we discuss the implementation of the 
proposed method by particle filters. A simulation example 
is provided in Section 4,  which shows that our expectations 
of the proposed method are met. Section 5 concludes the 
paper with some brief remarks. 

The paper is organized as follows. 

2. DISCOUNTING OF OLD MEASUREMENTS 
AND BAYESIAN SIGNAL PROCESSING 

Here we proceed by way of a very simple example. Suppose 
that the data yt, t = 1 , 2 , .  . . are observed, and that 

yt = e + ut (1) 

where 6' is an unknown parameter, the noise samples ut are 
independent and identically distributed, and ut - N(0, U:), 
with a; being known. After receiving one sample, all the 
information about 6' is in its posterior, which takes the form 

where the prior of 6' is assumed f(6') cx c,  with c being a con- 
stant. When the next sample y~ is received, the posterior 
f(0lyl) is updated to f(Bly2,yl) according to 

which results in 

where 
8, - Y1 +YZ 
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Note that in (3), the posterior from (2) acts as a prior for 0 
when it is estimated from y2, and it is multiplied with the 
likelihood f(yzl0). As new data are collected, this process 
is repeated. When yt is received, we have 

f(6lYl:J 0: f(Ytl0)f(eIYl:t-l) 

where y1.t = [yl y2 yt], and the posterior 

where 
t 

- 1  
0t = - c y n .  t 

(6) 

becomes 

(7) 

n=l 

It  is obvious that the MAP estimate of 0 after t samples is 
0t and that i t  can be obtained by 

(9) 

At this juncture, it is important to note that the RLS 
estimate of 0 is found by minimizing the criterion 

t 

and that the resulting estimator is identical to (9). The 
difference between the estimators is that the Bayesian esti- 
mator tracks the full posterior of 6, whereas the RLS esti- 
mator provides only a point estimate. The RLS estimator, 
however, does not make distributional assumptions about 
the noise ut. 

The parameter 0 however may change with time, and 
then its value at  time instant t is denoted by 6t .  A standard 
approach to tracking its changes is to use the exponentially 
weighted RLS method t h a t  minimizes the criterion 

t 

= (yn - enl2 (11) 
n=l 

where the An’s are constants, and 0 < An 5 1. In that case 
the RLS estimator is modified to [2] 

- . .  ot = et-1 + Yt (yt - et-,)  (12) 

where 

The idea behind the use of the criterion (12) is to discount 
old measurements and allow newer measurements to affect 
the estimate of 0t more than older measurements. 

In absence of a function that models the dynamic nature 
of 6 with time, is there an equivalent Bayesian approach to 
estimating B t ,  which in the case of Gaussian noise yields 
MAP estimate identical to the one given by (12)? The 
answer is yes. The following shows how we can find this 
estimator. 

After receiving the first measurement, the posterior of 
01 is given by (2). When y~ is obtained, we can decrease the 

effect of yl on B2 by using a different prior for 0 2  than the 
original one, which was f(02lyl) = f(01ly1). The modified 
prior has the form 

When this prior is combined with the likelihood f(yzl02), 
we obtain 

\ 1+x1 
(15) 

Next we receive y3, and the posterior (15) before becom- 
ing prior of 03 is spread out to reflect discounting of the 
measurements y1 and y2, or 

The new posterior then becomes 

where 

The derivation of the following posteriors is analogous, 
and it is not difficult to show that the general expression 
for it is 

r 

and 

It  can be readily proved that the MAP estimate dt given by 
(20) is identical to the RLS estimate (13). So, in summary, 
we conclude that we can invoke the concept of discounting 
measurements with the Bayesian methodology. This is done 
by appropriately modifying the posteriors, which serve as 
priors of the parameters that model the measurements yet 
to be taken. 

The above example is for a very simple model and for 
Gaussian noise. I t  is not difficult to show that it can be 
straightforwardly replicated for more complex models, which 
not only can be nonlinear, but can also be models that in- 
volve non-Gaussian noise. Here we continue the work on 
our example, where the noise now is a Gaussian mixture 
with p components, i.e., 

P 

i=l 
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where the coefficients of the mixands are known, E'?=] w; 
= 1, and 0 2 ~  # ( ~ 2 ~  for i # j. 

It can be shown that the posterior of Bt given yt, yt-l,  
..., y1 can be written as 

t P  

f(etiyl,t,X1:t-l) C( x w k f t , ( & )  (23) 
k=l 

where the coefficients ( ; lk  and the mixands ft, (0,) can easily 
be determined. It is obvious, however, that the number of 
terms in the posterior grows exponentially as new measure- 
ments arrive, which makes the whole method of discounting 
old measurements in this case impossible to implement. 

The tedious process of evaluating the posteriors when 
we have complicated posterior functions can be avoided if 
we adopt the concept of particle filters. Instead of track- 
ing the analytical functions that represent the posterior, we 
follow a set of particles that come from the posterior and 
thereby approximate it. Any estimate that is of interest 
can then be easily obtained by using these particles. But 
how do we implement the discounting of old measurements 
using particle filters? An answer to this question is given 
in the next section. 

3. IMPLEMENTATION BY PARTICLE 
FILTERS 

First, we briefly explain the concept of particle filters. Sup- 
pose that an observed phenomenon is described by the equa- 
tions 

et = ht(et+ut) (24) 
Y t  = gt(Bt,vt) (25) 

where ht(.) and S t ( . )  are some known functions, and ut and 
ut are noise samples from known distributions. The process 
Bt is not observed, that is, it is hidden, and the objective is 
to  track it sequentially using the samples yt as soon as they 
become available. 

We reiterate that all the information about Bt is in its 
posterior density f(Btlyl:t), so the best we can do is if a 
method is developed to track f(&lyl:t). Obviously, the 
nature of the method must be recursive, and therefore once 
yt+l is received, the main idea is to modify f(Btlyl:t) to 
f(Bt+lly1:t+l). The recursive formula for the updating is 

where 

When the functions in (24) and (25) are linear and the 
noises are Gaussian, the posteriors in (26) are also Gaus- 
sian, and as a result, it is sufficient to track only the first 
two moments of the posterior. In fact, the solution can then 
be obtained analytically, and the result is the Kalman filter. 
Deviations from linearity and Gaussianity lead to approx- 
imate solutions of which perhaps the most popular is the 
extended Kalman filter. 

An interesting alternative to the.standard solutions can 
be sought by employing particle filters, which are based on 
the concept of sequential importance sampling (SIS) [4], 
[ 5 ] .  The main idea behind SIS is to approximate the pos- 
terior densities by samples (particles). Suppose that BI", 
m = 1 , 2 , .  .. , M are particles from the density f(&lyl:t) ,  
each with probability mass wim), where E,"==, win) = 1. 
The particles with their probability masses represent an ap- 
proximation of the posterior density from which they are 
drawn, i.e., 

M 

m=l 

where 6 ( . )  is the Dirac's delta function. As new data be- 
come available, the main idea is to  propagate the particles 
and modify their weights so that the new set of particles 
and weights approximate f(Bt+l Iyl:t+l). 

Note that we can modify the posterior f (&:  tly1: t ) ,  with 
the arrival of yt+1, according to  

. ,  
The value of this expression is in that using the concept of 
particles it can be implemented recursively. If at time t ,  we 
have a set of particles and their weights from f (O1: t I  y1: t ) ,  

they can be updated to particles with associated weights 
from f(@,: t+ l  Iy1: t + l )  by applying the following sequential 
importance sampling procedure [4]: 

1. Draw particles Qiyj,  m = 1,2,. . . , M ,  from a pro- 
posal density, known as importance function, q(Bt+ll 

2 .  Compute the weights of the particles by 

Bt,Yl,t+l). 

and 

For details on the application of the procedure, see for ex- 
ample [4]. It is important to note that the accuracy of the 
method and the algorithms depends on the used importance 
function. For some choices of importance functions, consult 

We now get back to our original topic of discussion, 
the enforcing of discounting of measurements with parti- 
cle filters. It is worth noting two points: (a) the particle 
filters have no difficulties in handling hard problems like 
the one with Gaussian mixture presented above, and (b) 
in our problem statement we do not assume any model for 
the changes of the signal parameters. Now, the discounting 
of old measurements can easily be imposed if we use the 
particle filtering scheme on the following model: 

141, (51, [61, 171 . 

- 

Bt = Bt-1 +ut  ' (32) 
Yt = Bt + tut (33) 
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forgelling faclor = 0.9 
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Figure 1: Performance comparison of the exponentially 
weighted RLS and proposed Monte Carlo sampling methods 
for parameter estimation. The noise variance 05 = 1. 

where ut is a zero mean noise sample with a know distri- 
bution, say Gaussian. I t  is obvious that the samples Ot will 
have a wider distribution than the samples of Ot-1  because 
their distribution is convolved with the distribution of vt. 
The value of the variance of ut is easily deduced from (32), 
and it should be 

(34) 

In summary, the discounting of measurements is im- 
posed by adding a system equation to the data model that 
represents a random walk. The resulting system is sim- 
ple, and the tracking of the posterior density of Ot by using 
particles is straightforward. 

4. SIMULATION RESULTS 

To illustrate the performance of the proposed methodology, 
we proceed with our simple example and compare its perfor- 
mance to that of the conventional RLS method. The model 
of the observations yl is given by ( l ) ,  Bt varies with time in 
an unknown way, and ut is Gaussian with zero mean. To 
observe the behavior of the proposed method, & was varied 
between the values 2 and 3, as shown in Figures 1 and 2. 
The simulation was run for t = 300 time samples, and U; 
was 1 for the simulations in Figure 1 and 0.25 for Figure 2. 
The forgetting factor X used for both the particle filter and 
RLS method was Xt  = 0.9, t = 1 , 2 , .  . . ,300. 

In both figures we observe that the particle filter algo- 
rithm tracks Bt as well as the RLS method. As expected, 
due to the low value of the forgetting factor, there is consid- 
erable alertness to the dynamic nature of et. However, the 
price is that the estimates are jittery and not very accurate. 
Note that the tracking .performance of the particle filter is 
quite faithful to that of the conventional RLS. 

Monte carlo estimate 
RLS estimate 

1 .- 
50 100 150 200 250 

lime 
IO 

Figure 2: Performance comparison of the exponentially 
weighted RLS and proposed Monte CarJo sampling methods 
for parameter estimation. The noise variance at = 0.25. 

5. CONCLUSIONS 

We have proposed a Bayesian procedure for adaptive signal 
processing that employs discounting of old measurements. 
The discounting is implemented by convolving the most re- 
cent posterior of the tracked parameters with another den- 
sity. The resulting density serves as a prior in processing 
the next observation. It is also proposed that the scheme 
is carried out by particle filters. A powerful feature of the 
method is that it can be readily applied to highly nonlinear 
problems that involve non-Gaussian noise. 
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