
NEW RESAMPLING ALGORITHMS FOR PARTICLE FILTERS

Miodrug BoliC, Petar M. DjuriC, and Sangiin Hong

Department of Electrical and Computer Engineering
Stony Brook University

Stony Brook, NY, 11794-2350
mbolic, djuric, snjhong@ece.sunysb.edu

ABSTRACT
Resampling is a critically important operation in the implemen-
tation of particle filtering. In parallel hardware implementations,
resampling becomes a bottleneck due to its sequential nature and
thc increased complexity it imposes on the traffic of the designed
interconnection network. To circumvent some of these difficulties.
we propose two new resampling algorithms. The first one, called
residual-systematic resampling, combines the merits of both sys-
tematic and residual resampling and is suitable for pipelined im-
plementation. It also guarantees fixed duration of the resampling
procedure irrespective of the weight distribution of the particles.
The second algorithm, referred to as partial resampling, has low
complexity and reduces traffic load through the hardware network.
These two algorithms should also be considered as resampling
methods in simulations on standard computers.

1. INTRODUCTION

Particle filters perform three basic operations sequentially: gen-
eration of new particles (sampling step), computation of particle
weights (importance step), and resampling 151. The resampling
step is critical in every implementation of particle filtering because
without it, the weights of the particles quickly become so diverse
that inference is made by using only a very small number of p u -
ticles. The idea of resampling is to remove particle trajectories
with small weights and replace them with trajectories with large
weights. Resampling is an important statistical tool [I I], and it
was proposed for use in particle filtering in various works includ-
ing [Z, 8, 91. A detailed theoretical discussion of resampling in the
particle filtering context is given in [91.

Standard algorithms used for resampling are different van-
ants of stratified sampling such as residual resampling (RR) [I] ,
branching corrections [4], systematic resampling (SR) [5 , 61 as
well as resampling methods with rejection control [I 01. In this pa-
per. resampling algorithms are approached mainly from the stand-
point of parallel hardware implementation. In contrast to the sam-
pling and importance steps which are suitable for parallel imple-
mentation, resampling introduces full data dependencies that make
the parallelization of the resampling step very difficult. In addi-
tion. this step produces surviving particles which undergo further
processing and which in a parallel scheme require intense commu-
nication among the hardware elements.

In this paper we propose two new resampling algorithms, which
are developed by considering hardware implementation of the par-

This work has been supported under Awards CCR~OO82607 and CCR-

ticle filters. The main feature of the first resampling algorithm, re-
ferred to as residual-systematic resampling (RSR) and described in
Section 3, is to perform resampling in fixed time even if the num-
ber of particles at the input and output of the resampling procedure
is not the same. One such application is in tracking with particle
filter having variable number of particles 131. Using this algorithm,
maximum speed can be achieved where the resampling is paral-
lelieed in the sense that the particles are partitioned into groups and
resampled concurrently. In addition, RSR simplifies the control in
parallel implementations, while producing identical results as the
SR algorithm. In sequential applications (of MATLAB-type, for
example) we found that it is faster than the SR algorithm. When
the number of panicles is the power of two, it becomes simpler
and even faster.

The second algorithm, called partial resampling (PR) (Sec-
tion 4), addresses mainly communication issues. In the PR al-
gorithm, resampling is carried out only for particles with signifi-
cant weights, thereby reducing the resampling and communication
times.

2. BRIEF REVIEW OF THE SYSTEMATIC
RESAMPLING AND RESIDUAL RESAMPLING

ALGORITHMS

In this section, resampling algorithms are reviewed with worst case
analysis for determination of the sampling rate in hardware imple-
mentations. Note that here we do not consider rejection control al-
gorithms because they are not suitable for high speed implementa-
tions. Their time for resampling cannot be determined beforehand
because the execution time itself is a random variable. In other
words, the algorithm requires random number generation, where
the number of random draws cannot be predicted and is variable
due to random rejections.

The SR algorithm performs resampling in the same way as the
basic random resampling algorithm, with one exception. Instead of
drawing each U, independently from U (0 , l) f o r m = 1, ..., hl,
where M is the number of resampled particles, it uses a uniform
random number U according tu U - U[O, $1, and U,,, = U +
(m - l)/M. One possible algorithm for systematic resampling is
as follows:

(i)=SR(N, M)
Generate random number U - U[O, &]
s = o
for m = 1 : 1v

k = 0
022001 1. s = s + w(m)

0-7803-7663-3/03/$17.00 02003 IEEE 11 - 589 ICASSP 2003

mailto:snjhong@ece.sunysb.edu

while (s > U)
k = k + l
u = u + +

end
i(m) = k

end

Pseudocode I : Systematic resampling (SR) algorithm.

In Pseudocode 1, N is the input number of particles, M is the
number of particles generated after resampling, and w is an m a y
of scaled weights from the importance step. The output i is an
array of indexes, which shows how many times each particle is
replicated. We observe that SR is implemented using two loops.

The RR algorithm with a simple modification of the one pre-
sented by [I] can be implemented as follows:

(i) = R R (N , M)
A L = M
f o r m = 1 : N

i (m) = Lw(m) ' MJ
w(m) = w(m) ' M - i (m)
My = n% ~ i(m)

end
if Mr > 0

f o r m = l : N

end
(i,) = S R (N , M ?)
f o r m = 1 : N

end

w(m) = w(m)/Mr

i (m) = i(m) + i?((m)
end

Pseudocode 2: Residual resampling (RR) algorithm.

Here N and M have the same meaning as before, and w is an
array of scaled weights from the importance step. The output i, as
before. is an m a y of indexes, which shows how many times each
particle is replicated. We should note that RR is composed of two
steps. In the first step, the number of replications of particles is
calculated. Since this method does not guaantee that the number
of resampled particles is M , the residual My is computed. The
second step requires resampling which produces M, of the final
A t particles. In Pseudocode 2, this step is performed by SR.

The best case in terms of speed of execution of the RR algo-
rithm occurs when M, = 0 (for example, when wt"'M is an
integer for all m = 1 , 2 , . . . hf). In that case there is only one step
with m iterations. In other situations, there are two steps, where
the first one is the same as before, and the second step amounts
to resampling of the residuals. The worst case of RR arises when
M, = N - 1 . One example of that case is, when one particle has a
weight in the range [l / N , 2 / N) and the remaining N - 1 particles
have weights less than 1 / N . Then, step 2 requires generation of
N - 1 random numbers.

3. THE RESIDUAL-SYSTEMATIC RESAMPLING
ALGORITHM

The newly proposed resampling algorithm is based on stratified re-
sampling and the ideas behind the RR and SR algorithms. Hence
we refer to it as residual systematic resampling (RSR). Similarly

to RR, RSR calculates the number of times each particle is repli-
cated except that second iteration of the residual resampling by
using a special way of drawing random numbers for systematic . .
resampling.

In RR. the number of reolications of a soecific oarticle is de-
termined by truncating the product of the number of particles and
the particle weight. In RSR, instead of using only weights in the
product, weights are subtracted from the updated uniform random
number formed in similar fashion as in SR. The algorithm has only
one loop and the processing time is independent of the input data.
The RSR algorithm is summarized by the following pseudocode:

(i) = R S R (N , M)
Generate a random number U -U [0 , &]
f o r m = 1 : N

i(m) = i(w(m) - U) . A41 + 1
U = U + 9 - w (m)

end

Pseudocode 3: Residual systematic resampling (RSR) algorithm.

The resampling result obtained using RSR is identical to the
one using systematic resampling. In Figure I , we present graphi-
cally the two methods, where the difference between them can be
captured. It is shown that for the same uniform number U , the
positions of U after updating are the same for the two methods.
The only difference is that in systematic resampling, U is calcu-
lated with reference to the origin of the cumulative sum of weights.
while in RSR resampling, the number U is updated with reference
to the origin of the currently considered weight. For this reason,
the value of the weight of the previous particle must be subtracted
from U.

Zni" IU'.'"l,""
N:i

0"lP"i l l l j i l #l,I'2 101.1 (").I US1.l
~ - , ~ , - . ~ - - l - . - ~ - l ~ , ~ - , - i Cl'"

U - I m "=BIIo uririo U:,,," U*,,"

wc=*"Av*,*,r rrrlmiing

v(ll:740
.--I-.

" I l l l o

Fig. 1. The systematic and residual-systematic resampling meth-
ods for an example in which the number of particles is M = 5.

Even though RSR yields the same result as SR, the former has

1. The RSR algorithm contains only one loop

2. The complexity of the algorithm is always O (N) even if
the number of particles after resampling is greater than the
initial number of particles.

the following advantages:

11 - 590

3. RSRis suitable for pipelining because it can be implemented
without conditional branches.

4. PARTIAL RESAMPLING

The idea of partial resampling is to perform resampling only on
particles with large weights and replace them with particles with
negligible weights. Particles with moderate weights are not resam-
pled. The advantages of this method are the following:

1. resampling is done faster because i t is done on a much

2. communication is shorter since less particles are replicated

The main disadvantage is that after resampling the weights are not
equal and that for the calculation of new weights in the importance
step at t imet, the weight values at timet - 1 are used.

4.1. Partial stratified resampling

In partial stratified resampling (PSR), resampling is preceded by
a step that groups the particles according to their weights in three
sets. The weight of each particle is compared with a high and a
law thresholds, T, and Ti, respectively. Particles with weights
between those two thresholds are considered moderate and are not
resampled. Let the number of particles with weights greater than
Th and less than Ti he denoted by A i and N I , respectively. A sum
of weights of the particles that are resampled i s computed using
shi = cj,l w t i i J , where j is chosen so that the conditions

only on particles whose weights satisfy wf’ > T h nr XI?’ < 2‘.
The PSR consists of two loops. The first one contains N

iterations and is used for classifying the panicles as dominant,
moderate, or negligible. The second loop has (NI + Nh) itera-
tions, which equals the number of pmicles involved in the resam-
piing. In the end, a new random measure is produced, given by
{%$?’, G(m)}z=l where:

smaller number of particles, and

and replaced.

w f) > T h or wjj’ < ~i are satisfied. Then, SR or RSR is done

The PSR algorithm, where RSR is applied for resampling, re-
quires passing through two loops of N iterations. We can also
show that this method provides unbiased estimates. With PSR, the
communication requirements for the worst case are the same as for
SR, RR, or RSR. This case occurs when NI + N h = N , which
means that all the particle must be resampled. This implies, that
there cannot be improvements from an implementation standpoint.
It should be noted that there a e several ways of speeding up the
PSR algorithm and improving the communication during updating
of the states. One of them is described in the next subsection.

4.2. Partial deterministic resampling

For partial deterministic resampling (PDR), we again define two
thresholds Th and Ti, but now all the particles with weights less
than Ti are removed, the ones with weights between Th and TI
are unchanged, and the particles with weights larger than Th are
replicated. Each particle of Nh is replicated n; number of times,
where n; is the number equal (with e m r of one particle) for all
Nh particles.

For the purpose of presentation, we will assume that the par-
ticles are ordered as follows: dominating particles, negligible and
moderate particles. When Nh, Ni > 0, the weights of the parti-
cles, d”, and TL, are computed by

o < i < N h v(*lil

{: 7Ut- 1

,L< 1

LeJ Nh < 5 Nh + Ni

N h t N, < i 5 N,

& + wf(L$M, G(4 =

where, Nt = L Z J N h . If Nh andor NI are equal to zero, resam-
pling is not carried out.

We tested the performance of this method by applying it to the
beaings-only tracking problem with different initial conditions.
For this type of experiment, three sets of threshold values were
used, i.e., Th = { Z M , 5121,10M} and TI = {l/(Zhf), 1/(5M),
l/(IOhf)}. In Figure 2. for the three different pairs of thresh-
olds we show the number of times when the track is lost versus
number of particles. The used algorithms are SR, SR performed
every 5-th observation, and PDR. Another set of experiments was
performed for fixed Th and variable TI and vice versa. The re-
sults show that the number of times when tracking is lost decreases
when Ti decreases for fixed Th. The reason for this can he sought
in the fact that some particles with weights bellow Ti could also
carry useful information especially in the case when the obser-
vation noise has large variance. In the case of large Z j (such as
1/(2M)) those valuable particles would be removed. For fixed
TI and as we increase Th, the number of times when the track is
lost also increases. The reason for losing tracks more frequently
than for the case when resampling is performed every time is that,
again, particles with small weights which are very important in the
case of jumps are removed if the value of Th is high.

Fig. 2. Bearings-only tracking example: number of times when
track is lost for different the number of particles hl and different
threshold values

5. DISCUSSION

We reiterate that the complexity of the RR and RSR and PDR algo-
ri thmsisofO(N), and thatoftheSRalgorithm, ofO(max(N, M))
In Table 5 we provide a comparison of the different resampling

11 - 591

algorithms in terms of number of operations for a MATLAB-type
implementation. The results for RR are obtained for the worst case
scenario.

SR RR RSR

Additions 281+ N 6N 3 N
Multiplications 0 N N O

-~
Comparisons W + M 3N 0

PDR

N
2N

Table 1. Comparison of the number of operations for different
resampling algorithms.

When implementing the resampling algorithms, conditional
branches degrade the performance of an instruction pipeline. Due
to the random nature of the weights, techniques such as branch-
prediction buffer or branch history are not useful for branching
prediction in the SR case. So, the “while” loop in the resampling
step is undesirable because it makes the implementation of effi-
cient pipelining difficult. The RSR algorithm can be put in a form
very suitable for high-speed implementations.

In Table I , the time for exchanging paticles after the update
step was not taken into account. The number of panicles that
should be exchanged is the same for all stratified resampling al-
gorithms. However, in the case of PDR. the maximum number of
exchanging particles is N/Th, and that could represent a signif-
icant saving in the amount of traffic through the interconnection
network in a parallel implementation. On the other hand, PDR
makes the subsequent importance step more complicated since ad-
ditional operations me necessary during calculation of the weights.

In Figure 3, we present comparison results of the times of ex-
ecution of the SR, RSR, and PR algorithms. Three experiments
were performed on a standard PC, where in each experiment the
number of particles was N = A l = 1000,2000, and 4000. For
the PR algorithm, we used Th = { Z j A l , S J M , l O / A l } and =
{1/(2M), l / (jM) , l/(lOM)}. The results show that, as ex-
pected, the PR algorithms were the fastest (of which the one with
T, = l O / M and Tt = l/(lOhl) was the quickest, since then the
smallest number of panicles was resampled.) It has to be kept in
mind that the overall performance of particle filters that use PR is
usually poorer than the performance of panicle filters that employ
SR or the RSR method. It is important to notice the difference
between the SR and RSR. where RSR outpaces SR by 15%

Fig. 3. Relative duration of different resampling algorithms exe-
cuted on a standard PC.

6. CONCLUSION

In this paper two new resampling methods are proposed. RSR i s
based on stratified resampling, and it produces identical resam-
pling results as SR. However, RSR is faster and its duration of
resampling is the same for the fixed number of input particles re-
gardless of the output number of particles. PR is a threshold based
method in which only panicles with weights above the threshold
are resampled. Comparisons of the new algorithms with SR show
that new algorithms have only one loop (instead of two as in SR).
The communication requirements of PR are the lowest. but its per-
formances is worse than that of SR or RSR. In addition, il produces
non-equal weights after resampling which leads to accumulation
of error in calculating weights when finite precision arithmetics is
applied.

7. REFERENCES

[I] E. R. Beadle and P. M. Djurit, “A fast weighted Bayesian
bootstrap filter for nonlinear model state estimation,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 33,
pp. 338-343, 1997.

[21 C. Berzuini. N. G. Best, W. R. Gilks, and C. Larizza, “Dy-
namic conditional independence models and Markov chain
Monte Carlo methods,” Journal of the American Statistical
Association, vol. 92, pp. 1403-1412, 1997.

[3] M. Bolit, S. Hong and P. M. DjuriC, ”Performance and Com-
plexity Analysis of Adaptive Particle Filtering for Tracking
Applications”, to appear in Proceedings of the 36th IEEE
Asilomar Conference on Signals, Systems. and Computers
(Asilomar’2002). Pacific Grove, CA, November 2002.

[4] D. Crisan, P. Del Moral, and T. J. Lyons, “Non-linear filter-
ing using branching and interacting particle systems,” Markov
processes andRelatedFields, vol. 5 , no. 3, pp. 293-319, 1999.

[SI A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequential
Monte Carlo Methods in Practice, New York: Springer Verlag,
2001.

[6] N . J. Gordon, D. I. Salmond, and A. E M. Smith,”A novel
approach to nonlinear and non-Gaussian Bayesian state esti-
mation,” IEE Proceedings F, vol. 140, pp. 107-1 13, 1993.

[71 N. I. Gordon, D. I. Salmond, and C. Ewing, “Bayesian state
estimation for tracking and guidance using the bootstrap fil-
ter:’Joumal of Guidance, Control and Dynamics, vol. 18, pp.
1434-1443, 1995.

[S] A. Kong, I. S Liu, and W. H. Wong,“Sequential imputations
and Bayesian missing data problems;’, Journal of American
Statistical Association, vol. 89, no. 425, pp. 278-288, 1994.

[9] I. S. Liu and R. Chen, “Blind deconvolution via sequential
imputations:’ Journal ofAmerican Statistical Association, vol.
90.no.430, pp.567-576, 1995.

[IO] I. S . Liu, R. Chen, and W. H. Wong, “Rejection control and
sequential importance samplin,” Journal of American Sratisti-
cal Association, voI 93, no.443, pp. 1022-1031, 1998.

[I I] D. B. Rubin, J. M. Bernardo, M. H. De Groot, D. V. Lindley,
and A. E M . Smith, Bayesian Statistics 3, Oxford University
Press. pp. 395.402, 1988.

I1 - 592

