
Full Name:

Mock Final Exam

Instructions:

• This is a mock final exam.

• This exam is OPEN BOOK. You may use any books or notes you like.However, laptop usage is not
permitted.

Page 1 of 0

Problem 1. (xxx points):
Assume we are running code on a6-bit machine using two’s complement arithmetic for signed integers. A
“short” integer is encoded using3 bits. Fill in the empty boxes in the table below. The following definitions
are used in the table:

short sy = -3;
int y = sy;
int x = -17;
unsigned ux = x;

Note: You need not fill in entries marked with “–”.

Expression Decimal Representation Binary Representation

Zero 0

– −6

– 01 0010

ux

y

TMax

−TMin

Page 2 of 0

Problem 2. (xxx points):
Consider the source code below, whereMandNare constants declared with#define .

int mat1[M][N];
int mat2[N][M];

int sum_element(int i, int j)
{

return mat1[i][j] + mat2[i][j];
}

A. Suppose the above code generates the following assembly code:

sum_element:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
movl 12(%ebp),%ecx
sall $2,%ecx
leal 0(,%eax,8),%edx
subl %eax,%edx
leal (%eax,%eax,4),%eax
movl mat2(%ecx,%eax,4),%eax
addl mat1(%ecx,%edx,4),%eax
movl %ebp,%esp
popl %ebp
ret

What are the values ofMandN?

M=

N=

Page 3 of 0

Problem 3. (xxx points):
Consider the following C functions and assembly code:
int fun1(int a, int b)
{

if (a < b)
return a;

else
return b;

}

int fun2(int a, int b)
{

if (b < a)
return b;

else
return a;

}

pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%edx
movl 12(%ebp),%eax
cmpl %eax,%edx
jge .L9
movl %edx,%eax

.L9:
movl %ebp,%esp
popl %ebp
ret

Which of the functions compiled into the assembly code shown?

Page 4 of 0

Problem 4. (xxx points):

This next problem will test your understanding of stack frames. It is based on the following recursive C
function:

int silly(int n)
{

volatile int v;
v = n * 2 + 1;
return v;

}

This yields the following machine code:

silly:
pushl %ebp
movl %esp, %ebp
subl $16, %esp
pushl %ebx
movl 8(%ebp), %ebx
addl %ebx, %ebx
addl $1, %ebx
movl %ebx, -4(%ebp)
movl -4(%ebp), %eax
movl -20(%ebp), %ebx
movl %ebp, %esp
popl %ebp
ret

Page 5 of 0

A. Is the variablev stored on the stack? If so, at what byte offset (relative to%ebp) is it stored?

B. Is the function argumentn stored on the stack? If so, at what byte offset (relative to%ebp) is it
stored?

C. What (if anything) is stored at-20(%ebp) ? If something is stored there, why is it necessary to store
it?

D. What (if anything) is stored at-8(%ebp) ? If something is stored there, why is it necessary to store
it?

Page 6 of 0

Problem 5. (xxx points):
After watching the presidential election you decide to start a business in developing software for electronic
voting. The software will run on a machine with a 1024-byte direct-mapped data cache with 64 byte blocks.
You are implementing a prototype of your software that assumes that there are 7 candidates. The C-
structures you are using are:

struct vote {
int candidates[7];
int valid;

};

struct vote vote_array[16][16];
register int i, j, k;

You have to decide between two alternative implementationsof the routine that initializes the array
vote_array . You want to choose the one with the better cache performance.
You can assume:

• sizeof(int) = 4

• vote_array begins at memory address 0

• The cache is initially empty.

• The only memory accesses are to the entries of the arrayvote_array . Variablesi , j andk are
stored in registers.

Page 7 of 0

A. What percentage of the writes in the following code will miss in the cache?

for (i=0; i<16; i++){
for (j=0; j<16; j++) {

vote_array[i][j].valid=0;
}

}

for (i=0; i<16; i++){
for (j=0; j<16; j++) {

for (k=0; k<7; k++) {
vote_array[i][j].candidates[k] = 0;

}
}

}

Overall miss rate for writes tovote_array : _______ %

B. What percentage of the writes in the following code will miss in the cache?

for (i=0; i<16; i++){
for (j=0; j<16; j++) {

for (k=0; k<7; k++) {
vote_array[i][j].candidates[k] = 0;

}
vote_array[i][j].valid=0;

}
}

Miss rate for writes tovote_array : _______ %

Page 8 of 0

Problem 6. (xxx points):
Consider the C program below. (For space reasons, we are not checking error return codes, so assume that
all functions return normally.)

main() {

if (fork() == 0) {
if (fork() == 0) {

printf("3");
}
else {

pid_t pid; int status;
if ((pid = wait(&status)) > 0) {

printf("4");
}

}
}
else {

if (fork() == 0) {
printf("1");
exit(0);

}
printf("2");

}

printf("0");

return 0;
}

Out of the 5 outputs listed below, circle only the valid outputs of this program. Assume that all processes
run to normal completion.

A. 2030401 B. 1234000 C. 2300140

D. 2034012 E. 3200410

Page 9 of 0

Problem 7. (xxx points):
Consider the following C program. (For space reasons, we arenot checking error return codes. You can
assume that all functions return normally.)

int val = 10;

void handler(sig)
{

val += 5;
return;

}

int main()
{

int pid;

signal(SIGCHLD, handler);
if ((pid = fork()) == 0) {

val -= 3;
exit(0);

}
waitpid(pid, NULL, 0);
printf("val = %d\n", val);
exit(0);

}

What is the output of this program?val = ____________

Page 10 of 0

Problem 8. (xxx points):
Consider an allocator that uses an implicit free list. Each memory block, either allocated or free, has a size
that is a multiple of eight bytes. Thus, only the 29 higher order bits in the header and footer are needed to
record block size, which includes the header and footer and is represented in units of bytes. The header (or
footer) is 4-byte in size. The usage of the remaining 3 lower order bits is as follows:

• bit 0 indicates the use of the current block: 1 for allocated, 0 forfree.

• bit 1 indicates the use of the previous adjacent block: 1 for allocated, 0 for free.

• bit 2 is unused and is always set to be 0.

Five helper routines are defined to facilitate the implementation of free(void * p) . The functionality
of each routine is explained in the comment above the function definition. Fill in the body of the helper
routines the code section label that implement the corresponding functionality correctly.

/ * given a pointer p to an allocated block, i.e., p is a
pointer returned by some previous malloc()/realloc() call ;
returns the pointer to the header of the block * /

void * header(void * p)
{

void * ptr;

_______;
return ptr;

}

A. ptr=p-1
B. ptr=(void *)((int *)p-1)
C. ptr=(void *)((int *)p-4)

/ * given a pointer to a valid block header or footer,
returns the size of the block * /

int size(void * hp)
{

int result;

_______;
return result;

}

A. result=(* hp)&(˜7)
B. result=((* (char *)hp)&(˜5))<<2
C. result=(* (int *)hp)&(˜7)

Page 11 of 0

/ * given a pointer p to an allocated block,i.e. p is
a pointer returned by some previous malloc()/realloc() cal l;
returns the pointer to the footer of the block * /

void * footer(void * p)
{

void * ptr;

_______;
return ptr;

}

A. ptr=p+size(header(p))-8
B. ptr=p+size(header(p))-4
C. ptr=(int *)p+size(header(p))-2

/ * given a pointer to a valid block header or footer,
returns the usage of the currect block,
1 for allocated, 0 for free * /

int allocated(void * hp)
{

int result;

______;
return result;

}

A. result=(* (int *)hp)&1
B. result=(* (int * hp)&0
C. result=(* (int *)hp)|1

/ * given a pointer to a valid block header,
returns the pointer to the header of previous block in memory * /

void * prev(void * hp)
{

void * ptr;

______;
return ptr;

}

A. ptr = hp - size(hp)
B. ptr = hp - size(hp-4)
C. ptr = hp - size(hp-4) + 4

Page 12 of 0

Problem 9. (xxx points):
Recall that the readers-writers problem permits multiple readers to perform reading simultaneously but a
writer will exclude all other readers and writers. Below is acode snippet that attempts to solve the readers-
writers problem. There are multiple reader threads, each ofwhich invokesdo read function to perform
some reading. There are also multiple writer threads, each of which invokesdo write function to perform
some writing.

1: int readcnt; / * initialized to 0 * /
2: sem_t mutex, w; / * Both initialized to 1 * /
3:
4: void do_read()
5: {
6: P(&mutex);
7: readcnt++;
8: V(&mutex);
9: if (readcnt == 1)
10: P(&w);
11:
12: / * do some reading * /
13:
14: P(&mutex);
15: readcnt--;
16: V(&mutex);
17: if (readcnt == 0)
18: V(&w);
19:}
20:
21: void do_write(void)
22:{
23: P(&w);
24:
25: / * do some writing * /
26:
27: V(&w);
28:}

Will the above code allow readers to perform reading while some writer is concurrently doing
writing?
A. yes.
B. no.

If your answer is yes, give an example when this scenario happens.

Page 13 of 0

