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Motivation

• Google has implemented hundreds of special-purpose 

computations that process large amounts of raw data 

(crawled documents, web request logs, etc.,)

• The input data is usually large and the computations 

have to be distributed across hundreds or thousands of 

machines.

• The issues of how to parallelize the computation, 

distribute the data, and handle failures require large 

amounts of complex code to deal with these issues.



Motivation

There is a need for a 

simple and powerful 

interface that 

enables automatic

parallelization

and distribution 

of large-scale 

computations.
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Programming Model

The computations involved applying a map 

operation to each logical “record” in our input 

in order to compute a set of intermediate 

key/value pairs, and then applying a reduce 

operation to all the values that shared the 

same key, in order to combine the derived 

data appropriately.



Programming Model

The computation takes a set of input 

key/value pairs, and produces a set of output 

key/value pairs.(we have to represent the 

problem in this form!)



Programming Model

The user of the MapReduce library 

expresses the computation as two functions: 

Map and Reduce



Programming Model

• Map function:

takes an input pair and produces a set of intermediate 

key/value pairs.

The MapReduce library groups together all intermediate 

values associated with the same intermediate key I and 

passes them to the Reduce function.

• Reduce function

Accepts an intermediate key I and a set of values for 

that key. It merges together these values to form a 

possibly smaller set of values.
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Examples

Word Count



More examples

• Distributed Grep

• Count of URL Access Frequency

• Reverse Web-Link Graph

• Term-Vector per Host

• Inverted Index
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Implementation

• Many different implementations of the 

MapReduce interface are possible.

• The right choice depends on the 

environment ( small shared-memory, a large 

NUMA multi-processor, larger collection of 

networked machines).

• We will explain an implementation targeted

to the computing environment in wide use at 

Google.



Computing environment in wide 

use at Google

• Dual-processor x86 processors running Linux, with 2-4 

GB

• Commodity networking hardware is used – typically 

either 100 megabits/second or 1 gigabit/second at the 

machine level

• A cluster consists of hundreds or thousands of 

machines, and therefore machine failures are common.

• Storage is provided by inexpensive IDE disks attached 

directly to individual machines.

• Users submit jobs to a scheduling system. Each job 

consists of a set of tasks.



Execution Overview

• The Map invocations are distributed across 

multiple machines by partitioning the input 

data into a set of M splits.

• Reduce invocations are distributed by 

partitioning the intermediate key space into 

R pieces using a partitioning function (e.g., 

hash(key) mod R).

• The number of partitions (R) and the 

partitioning function are specified by the user 

(can we automate it ?!)



Execution Overview



Execution Overview-notes

• When a reduce worker is notified by the master 

about the locations of the buffered pairs, it uses 

remote procedure calls to read the buffered 

data from the local disks of the map workers.

• When a reduce worker has read all intermediate 

data, it sorts it by th intermediate keys so that 

all occurrences of the same key are grouped 

together. As many different keys map to the 

same reduce task(external sort).



Execution Overview-notes

• The output of the mapreduce execution is 

available in the R output files (one per 

reduce task, with file names as specified by 

the user).

• Users do not need to combine these R 

output files into one file – they often pass 

these files as input to another MapReduce 

call, or use them from another distributed 

application that is able to deal with input that 

is partitioned into multiple files.



Fault tolerance

Worker Failure

• The master pings every worker periodically.

• If no response is received from a worker in a certain 

amount of time, the master marks the worker as 

failed.

• Any map tasks completed by the worker are reset 

back to their initial idle state.

• Any map task or reduce task in progress on a failed 

worker is also reset to idle.



Fault tolerance

Worker Failure

• Completed map tasks are re-executed on 

a failure because their output is stored on 

the local disk(s) of the failed machine and 

is therefore inaccessible.

• Completed reduce tasks do not need to 

be re-executed since their output is stored 

in a global file system.



Worker Failure-notes

• MapReduce is resilient to large-scale worker 

failures.

• During one MapReduce operation, network 

maintenance on a running cluster was causing 

groups of 80 machines at a time to become 

unreachable for several minutes. 

• The MapReduce master simply re-executed

the work done by the unreachable worker 

machines, and continued to make forward 

progress, eventually completing the 

MapReduce operation.



Master Failure

Master Failure

• The failure can be handled by writing 

periodic checkpoints of the master data 

structures (and start a new copy)

• Given that there is only a single master, its 

failure is unlikely; therefore current 

implementation aborts the MapReduce 

computation if the master fails.

• Clients can check for this condition and retry 

the MapReduce operation if they desire.



Locality

• Network bandwidth is a relatively scarce 

resource.

• GFS divides each file into 64 MB blocks, and 

stores several copies of each block (typically 3 

copies) on different machines.

• The MapReduce master attempts to schedule a 

map task on a machine that contains a replica 

of the corresponding input data. Failing that, it 

attempts to schedule a map task near a replica 

of that task’s input data.



Task Granularity

• Map phase is divided into M pieces and the 

reduce phase into R pieces

• Ideally, M and R should be much larger than 

the number of worker machines.

• There are practical bounds on how large M 

and R can be in 
o The master must make O(M + R) scheduling 

decisions and keeps O(M ∗ R) state in memory.

o R is often constrained by users because the output 

of each reduce task ends up in a separate output 

file.



Task Granularity

• Map phase is divided into M pieces and the 

reduce phase into R pieces

• Ideally, M and R should be much larger than the 

number of worker machines.

• There are practical bounds on how large M and 

R can be in 

� The master must make O(M + R) scheduling 

decisions and keeps O(M ∗ R) state in memory.

� R is often constrained by users because the output 

of each reduce task ends up in a separate output 

file.



Backup Tasks

• Straggler: a machine that takes an unusually 

long time to complete one of the last few map or 

reduce tasks in the computation.

• Stragglers can arise for a whole host of 

reasons: 

� A machine with a bad disk may experience frequent 

correctable errors that slow its read performance 

from 30 MB/s to 1 MB/s!

� Scheduling many tasks on the machine, causing it to 

execute the MapReduce code more slowly due to 

competition for CPU, memory, local disk, or network 

bandwidth.



Backup Tasks

• When a MapReduce operation is close to 

completion, the master schedules backup 

executions of the remaining in-progress tasks.

• The task is marked as completed whenever 

either the primary or the backup execution 

completes.

• A sort program takes 44% longer to complete 

when the backup task mechanism is disabled.



Agenda

• Motivation

• Programming Model

• Examples

• Implementation

• Refinements

• Performance

• Hadoop



Partitioning Function

• A default partitioning function is provided that 

uses hashing (e.g. “hash(key)mod R”).

• This tends to result in fairly well-balanced 

partitions.

• Sometimes it is useful to partition data by some 

other function of the key:

� Using hash(Hostname(urlkey)) mod R” as the 

partitioning function causes all URLs from the same 

host to end up in the same output file.



Refinements

• Order Guarantees.

� support efficient random access lookups by key.

� Users of the output find it convenient to have the 

data sorted.

• Side effects

� While producing auxiliary files as additional outputs 

from map and/or reduce operators.

� We rely on the application writer to make such side-

effects atomic.



Refinements

Combiner functions
� Word counting: hundreds or thousands of records of the form 

<the, 1>.

� All of these counts will be sent over the network to a single 
reduce task

� The Combiner function is executed on each machine that 
performs a map task.

� The same code is used to implement both the combiner and the 
reduce functions.

� The output of a reduce function is written to the final output file. 

� The output of a combiner function is written to an intermediate 
file that will be sent to a reduce task.



Refinements

Skipping bad records
� Sometimes there are bugs in user code that cause the Map or 

Reduce functions to cras deterministically on certain records.

� Sometimes it is not feasible to fix a bug; perhaps the bug is in a 
third-party library for which source code is unavailable.

� Sometimes it is acceptable to ignore a few records, for example 
when doing statistical analysis on a large data set. 

� An optional mode of execution where the MapReduce library 
detects which records cause deterministic crashes and skips 
these records in order to make forward progress



Refinements

Status information:  Status pages show the 

progress of the computation
� How many tasks have been completed

� How many are in progress.

� Bytes of input.

� Bytes of intermediate data.

� Bytes of output, processing rates, etc. 

� Links to the standard error and standard output files 

generated by each task.



Refinements

• Status information: 

The user can use this data to
� Predict how long the computation will take

� whether or not more resources should be added to 

the computation.

� To figure out when the computation is much slower 

than expected.



Refinements

Counters: 

� user code may want to count total number of words 

processed or the number of German documents 

indexed.

� increments the counter appropriately in the Map 

and/or Reduce function.

� The counter values from individual worker machines 

are periodically propagated to the master 

(piggybacked on the ping response)

� The master eliminates the effects of duplicate 

executions of the same map or reduce task to avoid 

double counting.
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Performance

Cluster Configuration

� Cluster consisted of approximately 1800 

machines

� Each machine had two 2GHz Intel Xeon 

processors with Hyper-Threading enabled, 

� 4GB of memory.

� Two 160GB IDE disks



Performance

• Grep
� The grep program scans through 10^10 100-byte 

records, searching for a relatively rare three-

character pattern 

� The input is split into approximately 64MB pieces (M 

= 15000), and the entire output is placed in one file 

(R = 1).



Grep

The entire computation takes approximately 

150 seconds from start to finish.



Sort

• The sort program sorts 10�� 100-byte records 

(approximately 1 terabyte of data)

• Map function extracts a 10-byte sorting key from a text 

line and emits the key and the original text line as the 

intermediate key/value pair.

• Identity function is used as the Reduce operator.

• The input data is split into 64MB pieces (M = 15000).

• The sorted output is partitioned into 4000 files (R = 

4000). 



Sort-normal execution



Sort

• The shuffling starts as soon as the first

map task completes. The first hump in the 

graph is for the first batch of approximately 

1700 reduce tasks (the entire MapReduce was 

assigned about 1700 machines, and each 

machine executes at most one reduce task at a 

time). 

• There is a delay between the end of the first 

shuffling period and the start of the writing 

period because the machines are busy sorting 

the intermediate data.



Sort-Effect of Backup Tasks



Sort-Effect of Backup Tasks

• There is a very long tail where hardly any 

write activity occurs.

• After 960 seconds, all except 5 of the reduce 

tasks are completed.

• The entire computation takes 1283 seconds, 

an increase of 44% in elapsed time.



Machine Failures



Machine Failures

• The worker deaths show up as a negative input 

rate since some previously completed map work 

disappears (since the corresponding map 

workers were killed) and needs to be redone. 

The re-execution of this map work happens 

relatively quickly.

• The entire computation finishes in 933 seconds 

including startup overhead (just an increase of 

5% over the normal execution time).
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Hadoop

• Hadoop is a large-scale distributed batch 

processing infrastructure. 

• While it can be used on a single machine, its 

true power lies in its ability to scale to hundreds 

or thousands of computers, each with several 

processor cores.

• Hadoop is also designed to efficiently distribute 

large amounts of work across a set of machines.



Data distribution

• In a Hadoop cluster, data is distributed to all the 

nodes of the cluster as it is being loaded in.

• The Hadoop Distributed File System (HDFS) 

will split large data files into chunks which are 

managed by different nodes in the cluster. 

• Each chunk is replicated across several 

machines, so that a single machine failure does 

not result in any data being unavailable.



Data distribution



Mapreduce-isolated processes



The Hadoop Distributed File 

System

• HDFS is designed to store a very large amount of information 

(terabytes or petabytes).

• HDFS should store data reliably.

• HDFS should provide fast, scalable access to this information.

• It should be possible to serve a larger number of clients by simply 

adding more machines to the cluster.

• HDFS should integrate well with Hadoop MapReduce, allowing 

data to be read and computed upon locally when possible.



The Hadoop Distributed File 

System

• HDFS is optimized to provide streaming read performance, this 

comes at the expense of random seek times to arbitrary positions 

in files.

• Data will be written to the HDFS once and then read several times; 

updates to files after they have already been closed are not 

supported. 

• Due to the large size of files, and the sequential nature of reads, 

the system does not provide a mechanism for local caching of 

data. 

• Individual machines are assumed to fail on a frequent basis, both 

permanently and intermittently. 



The Hadoop Distributed File 

System

• HDFS is a block-structured file system: individual files 

are broken into blocks of a fixed size. 

• These blocks are stored across a cluster of one or more 

machines with data storage capacity. 

• Individual machines in the cluster are referred to as 

DataNodes.

• DFS combats the problem of machine failure by 

replicating each block across a number of machines (3, 

by default).



NameNode

• The metadata must be stored reliably.

• The metadata structures (e.g., the names of files and 

directories) can be modified by a large number of 

clients concurrently. It is important that this information 

is never desynchronized.

• The metadata is handled by a single machine, called 

the NameNode 

• Because of the relatively low amount of metadata per 

file (file names, permissions, and the locations of each 

block of each file), all of this information can be stored 

in the main memory of the NameNode machine, 

allowing fast access to the metadata.



NameNode

• To open a file, a client contacts the NameNode and 

retrieves a list of locations (DataNodes)for the blocks 

that comprise the file.

• Clients then read file data directly from the DataNode 

servers, possibly in parallel.

• The NameNode is not directly involved in this bulk data 

transfer, keeping its overhead to a minimum.



Mapreduce-a closer look



ZooKeeper

• ZooKeeper is a centralized service for 

maintaining configuration information, 

naming, providing distributed 

synchronization, and providing group 

services.

• The ZooKeeper service is intended to run on 

a set of several machines, which prevents 

the loss of individual nodes from bringing 

down the cluster.



ZooKeeper

• Manage configuration across nodes

• Implement reliable messaging

• Implement redundant services

• Synchronize process execution



Pig

• Pig is a platform for analyzing large data 

sets. 

• Pig's language, Pig Latin, lets you specify a 

sequence of data transformations such as 

merging data sets, filtering, and applying 

functions to records or groups of records. 

• Pig Latin programs are compiled into 

Map/Reduce jobs, and executed using 

Hadoop.



Pig

• The highest abstraction layer in Pig is a query language 

interface, whereby users express data analysis tasks as 

queries, in the style of SQL or Relational Algebra. 

• Queries apply a function to every record in a set, or 

group records according to some criterion.



Thank You

Question ?


