
MapReduce: Simplified
Data Processing on Large

Clusters

Ahmed Elbagoury

Dr.Iman Elghandour

Alexandria Univeristy

Agenda

• Motivation

• Programming Model

• Examples

• Implementation

• Refinements

• Performance

• Hadoop

Motivation

• Google has implemented hundreds of special-purpose

computations that process large amounts of raw data

(crawled documents, web request logs, etc.,)

• The input data is usually large and the computations

have to be distributed across hundreds or thousands of

machines.

• The issues of how to parallelize the computation,

distribute the data, and handle failures require large

amounts of complex code to deal with these issues.

Motivation

There is a need for a

simple and powerful

interface that

enables automatic

parallelization

and distribution

of large-scale

computations.

Agenda

• Motivation

• Programming Model

• Examples

• Implementation

• Refinements

• Performance

• Hadoop

Programming Model

The computations involved applying a map

operation to each logical “record” in our input

in order to compute a set of intermediate

key/value pairs, and then applying a reduce

operation to all the values that shared the

same key, in order to combine the derived

data appropriately.

Programming Model

The computation takes a set of input

key/value pairs, and produces a set of output

key/value pairs.(we have to represent the

problem in this form!)

Programming Model

The user of the MapReduce library

expresses the computation as two functions:

Map and Reduce

Programming Model

• Map function:

takes an input pair and produces a set of intermediate

key/value pairs.

The MapReduce library groups together all intermediate

values associated with the same intermediate key I and

passes them to the Reduce function.

• Reduce function

Accepts an intermediate key I and a set of values for

that key. It merges together these values to form a

possibly smaller set of values.

Agenda

• Motivation

• Programming Model

• Examples

• Implementation

• Refinements

• Performance

• Hadoop

Examples

Word Count

More examples

• Distributed Grep

• Count of URL Access Frequency

• Reverse Web-Link Graph

• Term-Vector per Host

• Inverted Index

Agenda

• Motivation

• Programming Model

• Examples

• Implementation

• Refinements

• Performance

• Hadoop

Implementation

• Many different implementations of the

MapReduce interface are possible.

• The right choice depends on the

environment (small shared-memory, a large

NUMA multi-processor, larger collection of

networked machines).

• We will explain an implementation targeted

to the computing environment in wide use at

Google.

Computing environment in wide

use at Google

• Dual-processor x86 processors running Linux, with 2-4

GB

• Commodity networking hardware is used – typically

either 100 megabits/second or 1 gigabit/second at the

machine level

• A cluster consists of hundreds or thousands of

machines, and therefore machine failures are common.

• Storage is provided by inexpensive IDE disks attached

directly to individual machines.

• Users submit jobs to a scheduling system. Each job

consists of a set of tasks.

Execution Overview

• The Map invocations are distributed across

multiple machines by partitioning the input

data into a set of M splits.

• Reduce invocations are distributed by

partitioning the intermediate key space into

R pieces using a partitioning function (e.g.,

hash(key) mod R).

• The number of partitions (R) and the

partitioning function are specified by the user

(can we automate it ?!)

Execution Overview

Execution Overview-notes

• When a reduce worker is notified by the master

about the locations of the buffered pairs, it uses

remote procedure calls to read the buffered

data from the local disks of the map workers.

• When a reduce worker has read all intermediate

data, it sorts it by th intermediate keys so that

all occurrences of the same key are grouped

together. As many different keys map to the

same reduce task(external sort).

Execution Overview-notes

• The output of the mapreduce execution is

available in the R output files (one per

reduce task, with file names as specified by

the user).

• Users do not need to combine these R

output files into one file – they often pass

these files as input to another MapReduce

call, or use them from another distributed

application that is able to deal with input that

is partitioned into multiple files.

Fault tolerance

Worker Failure

• The master pings every worker periodically.

• If no response is received from a worker in a certain

amount of time, the master marks the worker as

failed.

• Any map tasks completed by the worker are reset

back to their initial idle state.

• Any map task or reduce task in progress on a failed

worker is also reset to idle.

Fault tolerance

Worker Failure

• Completed map tasks are re-executed on

a failure because their output is stored on

the local disk(s) of the failed machine and

is therefore inaccessible.

• Completed reduce tasks do not need to

be re-executed since their output is stored

in a global file system.

Worker Failure-notes

• MapReduce is resilient to large-scale worker

failures.

• During one MapReduce operation, network

maintenance on a running cluster was causing

groups of 80 machines at a time to become

unreachable for several minutes.

• The MapReduce master simply re-executed

the work done by the unreachable worker

machines, and continued to make forward

progress, eventually completing the

MapReduce operation.

Master Failure

Master Failure

• The failure can be handled by writing

periodic checkpoints of the master data

structures (and start a new copy)

• Given that there is only a single master, its

failure is unlikely; therefore current

implementation aborts the MapReduce

computation if the master fails.

• Clients can check for this condition and retry

the MapReduce operation if they desire.

Locality

• Network bandwidth is a relatively scarce

resource.

• GFS divides each file into 64 MB blocks, and

stores several copies of each block (typically 3

copies) on different machines.

• The MapReduce master attempts to schedule a

map task on a machine that contains a replica

of the corresponding input data. Failing that, it

attempts to schedule a map task near a replica

of that task’s input data.

Task Granularity

• Map phase is divided into M pieces and the

reduce phase into R pieces

• Ideally, M and R should be much larger than

the number of worker machines.

• There are practical bounds on how large M

and R can be in
o The master must make O(M + R) scheduling

decisions and keeps O(M ∗ R) state in memory.

o R is often constrained by users because the output

of each reduce task ends up in a separate output

file.

Task Granularity

• Map phase is divided into M pieces and the

reduce phase into R pieces

• Ideally, M and R should be much larger than the

number of worker machines.

• There are practical bounds on how large M and

R can be in

� The master must make O(M + R) scheduling

decisions and keeps O(M ∗ R) state in memory.

� R is often constrained by users because the output

of each reduce task ends up in a separate output

file.

Backup Tasks

• Straggler: a machine that takes an unusually

long time to complete one of the last few map or

reduce tasks in the computation.

• Stragglers can arise for a whole host of

reasons:

� A machine with a bad disk may experience frequent

correctable errors that slow its read performance

from 30 MB/s to 1 MB/s!

� Scheduling many tasks on the machine, causing it to

execute the MapReduce code more slowly due to

competition for CPU, memory, local disk, or network

bandwidth.

Backup Tasks

• When a MapReduce operation is close to

completion, the master schedules backup

executions of the remaining in-progress tasks.

• The task is marked as completed whenever

either the primary or the backup execution

completes.

• A sort program takes 44% longer to complete

when the backup task mechanism is disabled.

Agenda

• Motivation

• Programming Model

• Examples

• Implementation

• Refinements

• Performance

• Hadoop

Partitioning Function

• A default partitioning function is provided that

uses hashing (e.g. “hash(key)mod R”).

• This tends to result in fairly well-balanced

partitions.

• Sometimes it is useful to partition data by some

other function of the key:

� Using hash(Hostname(urlkey)) mod R” as the

partitioning function causes all URLs from the same

host to end up in the same output file.

Refinements

• Order Guarantees.

� support efficient random access lookups by key.

� Users of the output find it convenient to have the

data sorted.

• Side effects

� While producing auxiliary files as additional outputs

from map and/or reduce operators.

� We rely on the application writer to make such side-

effects atomic.

Refinements

Combiner functions
� Word counting: hundreds or thousands of records of the form

<the, 1>.

� All of these counts will be sent over the network to a single
reduce task

� The Combiner function is executed on each machine that
performs a map task.

� The same code is used to implement both the combiner and the
reduce functions.

� The output of a reduce function is written to the final output file.

� The output of a combiner function is written to an intermediate
file that will be sent to a reduce task.

Refinements

Skipping bad records
� Sometimes there are bugs in user code that cause the Map or

Reduce functions to cras deterministically on certain records.

� Sometimes it is not feasible to fix a bug; perhaps the bug is in a
third-party library for which source code is unavailable.

� Sometimes it is acceptable to ignore a few records, for example
when doing statistical analysis on a large data set.

� An optional mode of execution where the MapReduce library
detects which records cause deterministic crashes and skips
these records in order to make forward progress

Refinements

Status information: Status pages show the

progress of the computation
� How many tasks have been completed

� How many are in progress.

� Bytes of input.

� Bytes of intermediate data.

� Bytes of output, processing rates, etc.

� Links to the standard error and standard output files

generated by each task.

Refinements

• Status information:

The user can use this data to
� Predict how long the computation will take

� whether or not more resources should be added to

the computation.

� To figure out when the computation is much slower

than expected.

Refinements

Counters:

� user code may want to count total number of words

processed or the number of German documents

indexed.

� increments the counter appropriately in the Map

and/or Reduce function.

� The counter values from individual worker machines

are periodically propagated to the master

(piggybacked on the ping response)

� The master eliminates the effects of duplicate

executions of the same map or reduce task to avoid

double counting.

Agenda

• Motivation

• Programming Model

• Examples

• Implementation

• Refinements

• Performance

• Hadoop

Performance

Cluster Configuration

� Cluster consisted of approximately 1800

machines

� Each machine had two 2GHz Intel Xeon

processors with Hyper-Threading enabled,

� 4GB of memory.

� Two 160GB IDE disks

Performance

• Grep
� The grep program scans through 10^10 100-byte

records, searching for a relatively rare three-

character pattern

� The input is split into approximately 64MB pieces (M

= 15000), and the entire output is placed in one file

(R = 1).

Grep

The entire computation takes approximately

150 seconds from start to finish.

Sort

• The sort program sorts 10�� 100-byte records

(approximately 1 terabyte of data)

• Map function extracts a 10-byte sorting key from a text

line and emits the key and the original text line as the

intermediate key/value pair.

• Identity function is used as the Reduce operator.

• The input data is split into 64MB pieces (M = 15000).

• The sorted output is partitioned into 4000 files (R =

4000).

Sort-normal execution

Sort

• The shuffling starts as soon as the first

map task completes. The first hump in the

graph is for the first batch of approximately

1700 reduce tasks (the entire MapReduce was

assigned about 1700 machines, and each

machine executes at most one reduce task at a

time).

• There is a delay between the end of the first

shuffling period and the start of the writing

period because the machines are busy sorting

the intermediate data.

Sort-Effect of Backup Tasks

Sort-Effect of Backup Tasks

• There is a very long tail where hardly any

write activity occurs.

• After 960 seconds, all except 5 of the reduce

tasks are completed.

• The entire computation takes 1283 seconds,

an increase of 44% in elapsed time.

Machine Failures

Machine Failures

• The worker deaths show up as a negative input

rate since some previously completed map work

disappears (since the corresponding map

workers were killed) and needs to be redone.

The re-execution of this map work happens

relatively quickly.

• The entire computation finishes in 933 seconds

including startup overhead (just an increase of

5% over the normal execution time).

Agenda

• Motivation

• Programming Model

• Examples

• Implementation

• Refinements

• Performance

• Hadoop

Hadoop

• Hadoop is a large-scale distributed batch

processing infrastructure.

• While it can be used on a single machine, its

true power lies in its ability to scale to hundreds

or thousands of computers, each with several

processor cores.

• Hadoop is also designed to efficiently distribute

large amounts of work across a set of machines.

Data distribution

• In a Hadoop cluster, data is distributed to all the

nodes of the cluster as it is being loaded in.

• The Hadoop Distributed File System (HDFS)

will split large data files into chunks which are

managed by different nodes in the cluster.

• Each chunk is replicated across several

machines, so that a single machine failure does

not result in any data being unavailable.

Data distribution

Mapreduce-isolated processes

The Hadoop Distributed File

System

• HDFS is designed to store a very large amount of information

(terabytes or petabytes).

• HDFS should store data reliably.

• HDFS should provide fast, scalable access to this information.

• It should be possible to serve a larger number of clients by simply

adding more machines to the cluster.

• HDFS should integrate well with Hadoop MapReduce, allowing

data to be read and computed upon locally when possible.

The Hadoop Distributed File

System

• HDFS is optimized to provide streaming read performance, this

comes at the expense of random seek times to arbitrary positions

in files.

• Data will be written to the HDFS once and then read several times;

updates to files after they have already been closed are not

supported.

• Due to the large size of files, and the sequential nature of reads,

the system does not provide a mechanism for local caching of

data.

• Individual machines are assumed to fail on a frequent basis, both

permanently and intermittently.

The Hadoop Distributed File

System

• HDFS is a block-structured file system: individual files

are broken into blocks of a fixed size.

• These blocks are stored across a cluster of one or more

machines with data storage capacity.

• Individual machines in the cluster are referred to as

DataNodes.

• DFS combats the problem of machine failure by

replicating each block across a number of machines (3,

by default).

NameNode

• The metadata must be stored reliably.

• The metadata structures (e.g., the names of files and

directories) can be modified by a large number of

clients concurrently. It is important that this information

is never desynchronized.

• The metadata is handled by a single machine, called

the NameNode

• Because of the relatively low amount of metadata per

file (file names, permissions, and the locations of each

block of each file), all of this information can be stored

in the main memory of the NameNode machine,

allowing fast access to the metadata.

NameNode

• To open a file, a client contacts the NameNode and

retrieves a list of locations (DataNodes)for the blocks

that comprise the file.

• Clients then read file data directly from the DataNode

servers, possibly in parallel.

• The NameNode is not directly involved in this bulk data

transfer, keeping its overhead to a minimum.

Mapreduce-a closer look

ZooKeeper

• ZooKeeper is a centralized service for

maintaining configuration information,

naming, providing distributed

synchronization, and providing group

services.

• The ZooKeeper service is intended to run on

a set of several machines, which prevents

the loss of individual nodes from bringing

down the cluster.

ZooKeeper

• Manage configuration across nodes

• Implement reliable messaging

• Implement redundant services

• Synchronize process execution

Pig

• Pig is a platform for analyzing large data

sets.

• Pig's language, Pig Latin, lets you specify a

sequence of data transformations such as

merging data sets, filtering, and applying

functions to records or groups of records.

• Pig Latin programs are compiled into

Map/Reduce jobs, and executed using

Hadoop.

Pig

• The highest abstraction layer in Pig is a query language

interface, whereby users express data analysis tasks as

queries, in the style of SQL or Relational Algebra.

• Queries apply a function to every record in a set, or

group records according to some criterion.

Thank You

Question ?

