
Web development with Ruby on
Rails

Unit 2: HTTP, HTML and CSS

Homework on Blackboard
Discussion on Piazza

http://piazza.com/upenn/fall2012/cis196

My Office hours, Wednesday
morning

6th Floor Levine Lounge

HTTP
How computers on the internet talk to eachother

How your browser talks to the internet

How your browser talks to your Rails app

A GET

Browser: Ohai, can I get an expense list?

Server: Sure, one sec

Server: Okay, here it is, it's an HTML file, btw.

Server: (attachment: expenses.html)

> GET /expenses HTTP/1.1

HTTP/1.1 200 OK
Content-Type: text/html;charset=utf-8
Content-Length: 2959
Connection: keep-alive
Server: thin 1.3.1

<!DOCTYPE html>
...

A POST

Browser: I'm back, can you keep this somehere
safe for me?

Browser: It's a new expenses document.

Browser: (attachment: expense form data)

Server: Sure, got it.

Server: Do you want to see a list of all the
expense documents?

> POST /expenses HTTP/1.1
> Content-Type:
> application/x-www-form-urlencoded
> Content-Length: 39
>
> description=Lunch+with+mom&amount=2.50

HTTP/1.1 302 Found
Location: /expenses

Also DELETE and PUT

Headers
Tell the server about the request

Tell the browser about the response

> POST /expenses HTTP/1.1
> X-This-Is: A request header
>
> (content)

HTTP/1.1 200 Ok
X-This-Is: A response header

(content)

Cookies
A secret that the browser and server share

Server creates them

Sends as a Set-Cookie header

Browser only send them back to the server they
came from

Sends as a Cookie header

Cookies
Useful mainly for identification

Also can store small amounts of user data

Server: Here's your expense list

Server: oh, let's make "cupcake" our secret word

Browser: Thanks! fun, it's like we're spys :)

> GET /expenses HTTP/1.1

HTTP/1.1 200 OK
Content-Type: text/html;charset=utf-8
Content-Length: 2959
Connection: keep-alive
Server: thin 1.3.1
Set-Cookie: secret=cupcake

<!DOCTYPE html>
...

Browser: Hey it's me again, can I get the latest
expense list?

Server: prove it

Browser: cupcake, now give me the list

Server: sorry, having a paranoid day. Here you go

> GET /expenses HTTP/1.1

HTTP/1.1 403 Forbidden

> GET /expenses HTTP/1.1
> Cookie: secret=cupcake

HTTP/1.1 200 OK
Content-Type: text/html;charset=utf-8
Content-Length: 2959
Connection: keep-alive
Server: thin 1.3.1

<!DOCTYPE html>
...

RESTful web design
Using HTTP to it's full capabilities

GET, POST, PUT, DELETE

Using headers to talk about the data

Treating URLs as "resources"

Rails REST
GET /things -> a list of things
GET /things/1 -> a thing
POST /things -> make a new thing
PUT /things/1 -> update an old thing
DELETE /things/1 -> delete a thing

Let's make a resource

cd plusdollar
rails generate scaffold \
 pledge \
 issue_url:string \
 issue_title: string \
 amount:decimal
rake db:migrate
rails server

Watching it happen
Get Chrome

Open the Network panel

Click "Record"

Start clicking!

HTML
The web's Word doc

Boilerplate

<!DOCTYPE html>
<html>
 <head>
 <title>My awesome page</title>
 </head>
 <body>
 <p>Hello world!</p>
 </body>
</html>

Things that do stuff

Links

 Click me

Forms
<form action="someotherpage.html"
 method="post">
 <input type="text" name="a_field" />
 <input type="submit"
 value="A Button!" />
</form>

Make it pretty
with CSS

<p>Some stuff</p>

Some stuff

<div class="warning">
 <p>Some stuff</p>
</div>

.warning { color: red; }

Some stuff

Can use id="blah" and #blah

Or mix classes

class="big warning" and .big.warning

More at reference.sitepoint.com

Or use a framework

http://twitter.github.com/bootstrap

http://foundation.zurb.com

http://thoughtbot.com/neat/

http://960.gs/

http://thesquaregrid.com/

Homework

Put a link on your index.html to your blog, github
or twitter profile

Put a form on your index.html with at least an input
field and a button

(doesn't have to post to anywhere)

Style up the page either by hand or with a
framework

Bonus (3pts): Make a scaffolded resource in your
rails app, interact with it

http://guides.rubyonrails.org/getting_started.html

#philly.rb IRC channel on freenode.net for help.

