
CS101
Java Programming

Fall 2012
Thursdays 10:00-12:00noon

RF Academy

Copyright © 2010

Announcements

• Assignment #2 has been distributed
– Must be completed with only material from Chapter 1 of the text

• Assignment #3 will be sent out in a few days

• Generic questions about the assignments should be
posted to Piazza
– Students are welcome to post answers if they know the answers
– Please do not post your code to Piazza

• Questions??

Copyright © 2010

Java’s Primitive Types
• four integer types (byte, short, int, and long)

– int is most common

• two floating-point types (float and double)
– double is most common

• one character type (char)

• one boolean type (boolean)

• Why does Java distinguish integers vs. real numbers?
• Types that are not primitive are called object types. (seen later)

Copyright © 2010

Expressions

• expression: A value or operation that computes a value.
• Examples: 1 + 4 * 5

(7 + 2) * 6 / 3
42

• The simplest expression is a literal value.
– Such as the value 42 above.

• A complex expression can use operators and
parentheses.

Copyright © 2010

Arithmetic operators

• operators: Combines multiple values or expressions.
+ addition
- subtraction (or negation)
* multiplication
/ division
% modulus (a.k.a. remainder)

• As a program runs, its expressions are evaluated.
1 + 1 evaluates to 2
System.out.println(3 * 4); prints 12

• How would we print the text 3 * 4 ?

Copyright © 2010

Integer division with /

• When we divide integers, the quotient is also an integer.
14/4 is 3, not 3.5 (the fractional part is truncated)

3 4 52
4) 14 10) 47 27) 1425

12 40 135
2 7 75

54
21

• More examples:
– 32 / 5 is 6
– 84 / 10 is 8
– 156 / 100 is 1

– Dividing by 0 causes an error when your program runs.

Copyright © 2010

Integer remainder with %
• The % operator computes the remainder from integer division.

14 % 4 is 2
218 % 5 is 3

3 43
4) 14 5) 218

12 20
2 18

15
3

• Applications of % operator:
– Obtain last digit of a number: 230857 % 10 is 7
– Obtain last 4 digits: 658236489 % 10000 is 6489
– See whether a number is even/odd: 42 % 2 is 0, 7 % 2 is 1

• What is 8 % 20?
8 !

Copyright © 2010

Parentheses and Precedence

• Parentheses can communicate the order in which
arithmetic operations are performed

• examples:
(10 + 213) * 37
10 + (213 * 37)

• Without parentheses, an expression is evaluated
according to the rules of precedence.

Copyright © 2010

Precedence Rules

Copyright © 2010

Precedence Rules

• What is the difference between unary +/– operators and
binary +/– operators?

• Unary +/– make a number positive or negative
• Binary +/– perform addition or subtraction
• Examples:

–5+7
–(5+7)

Copyright © 2010

Precedence Rules

• When binary operators have equal precedence, they are
evaluated left-to-right.

1+2-3+4 is the same as ((1+2)-3)+4

• When unary operators have equal precedence, they are
evaluated right-to-left.

Copyright © 2010

Precedence Rules
• Even when parentheses are not needed, they can

be used to make the code clearer.

• Spaces also make code clearer:
1 + 2*3

but spaces do not dictate precedence:
1+3 * 4-2 is 11

Copyright © 2010

Precedence examples
1 * 2 + 3 * 5 % 4
_/
|
2 + 3 * 5 % 4

_/
|

2 + 15 % 4
___/

|
2 + 3
________/

|
5

• Equivalent fully parenthesized expression:
((1 * 2) + ((3 * 5) % 4))

Copyright © 2010

Real numbers (type double)

• Examples: 6.022 , -42.0 , 2.143e17

– Placing .0 or . after an integer makes it a double.

• The operators +-*/%() all still work with double.

/ produces a double answer: 15.0 / 2.0 is 7.5

Precedence is the same: () before */% before +-

Copyright © 2010

Real number example

2.0 * 2.4 + 2.25 * 4.0 / 2.0
___/
|
4.8 + 2.25 * 4.0 / 2.0

___/
|

4.8 + 9.0 / 2.0
_____/

|
4.8 + 4.5

____________/
|
9.3

Copyright © 2010

Mixing types

• When int and double are mixed, the result is a double.
4.2 * 3 is 12.6

• The conversion is per-operator, affecting only its operands.
– 7 / 3 * 1.2 + 3 / 2
– _/

|
2 * 1.2 + 3 / 2

– ___/
|
2.4 + 3 / 2

– _/
|

2.4 + 1
– ________/

|
3.4

– 3/2 is 1 above, not 1.5.

Copyright © 2010

• string concatenation: Using + between a string and
another value to make a longer string.

"hi" + " there" is "hi there"
"hello" + 42 is "hello42"
"abc" + 1 + 2 is "abc12"
1 + 2 + "abc" is "3abc"
"abc" + 9 * 3 is "abc27"
"1" + 1 is "11"
4 - 1 + "abc" is "3abc"

• Use + to print a string and an expression's value together.
System.out.println("Grade: " + ((95.1 + 71.9) / 2));

Output: Grade: 83.5

String concatenation

Copyright © 2010

Receipt example
What's bad about the following code?

public class Receipt {
public static void main(String[] args) {

// Calculate total owed, assuming 8% tax & 15% tip
System.out.println("Subtotal:");
System.out.println(38 + 40 + 30);
System.out.println("Tax:");
System.out.println((38 + 40 + 30) * .08);
System.out.println("Tip:");
System.out.println((38 + 40 + 30) * .15);
System.out.println("Total:");
System.out.println(38 + 40 + 30 +

(38 + 40 + 30) * .08 +
(38 + 40 + 30) * .15);

}
}

– The subtotal expression (38 + 40 + 30) is repeated
– So many println statements

Copyright © 2010

Variables and Values
• Variables store data such as numbers and letters.

– Think of them as places to store data.
– They are implemented as memory locations.

• The data stored by a variable is called its value.
– The value is stored in the memory location.

• Its value can be changed.

Copyright © 2010

Naming and Declaring Variables
• Variables have two attributes: a name and a type

– The name is an identifier and must obey Java’s rules

• When you declare a variable, you provide its type and
name.
int numberOfBaskets, eggsPerBasket;

• A variable’s type determines what kinds of values it can
hold (int, double, char, etc.).

• A variable must be declared before it is used.

• Choose names that are helpful such as count or speed,
but not c or s.

Copyright © 2010

Syntax and Examples

• syntax
type variable_1, variable_2, …;
(variable_1 is a generic variable called a syntactic variable)

• examples:

int styleChoice, numberOfChecks;
double balance, interestRate;
char jointOrIndividual;

Copyright © 2010

Where to Declare Variables

• Declare a variable…
– just before it is used for the first time, or

– at the beginning of the section of your program that
is enclosed in {}.

public static void main(String[] args)
{
// declare variables here

}

Copyright © 2010

Assignment Statements
• An assignment statement is used to assign a value

to a variable.

answer = 42;

• The “equal sign” is called the assignment operator.

• We say, “The variable named answer is assigned a
value of 42,” or more simply, “answer is assigned 42.”

Copyright © 2010

Assignment Statements, cont.

• Syntax

variable = expression;

where expression can be another variable, a literal or
constant (such as a number), or something more
complicated which combines variables and literals using
operators (such as + and -)

Copyright © 2010

Assignment Examples

amount = 3.99;

firstInitial = 'W';

score = numberOfCards + handicap;

Copyright © 2010

Assignment Evaluation

1. The expression on the right-hand side of the
assignment operator (=) is evaluated first.

2. The result is then used to set the value of the variable
on the left-hand side of the assignment operator.

score = numberOfCards + handicap;

eggsPerBasket = eggsPerBasket - 2;

Copyright © 2010

• Once given a value, a variable can be used in expressions:
int x;
x = 3;
System.out.println("x is " + x); // x is 3

System.out.println(5 * x - 1); // 14

• You can assign a value more than once:
int x;
x = 3;
System.out.println(x + " here"); // 3 here

x = 4 + 7;
System.out.println("now x is " + x); // now x is 11

Using variables

Copyright © 2010

Specialized Assignment Operators

• Assignment operators can be combined with arithmetic
operators (including +, -, *, /, and %).

amount = amount + 5;

can be written as
amount += 5;

yielding the same results.

Shorthand Equivalent longer version
variable += expr; variable = variable + (expr);
variable -= expr; variable = variable - (expr);
variable *= expr; variable = variable * (expr);
variable /= expr; variable = variable / (expr);
variable %= expr; variable = variable % (expr);

Copyright © 2010

Declaration/initialization

• A variable can be declared & initialized in one statement.

• Syntax:
type name = value;

double myGPA = 3.95;
int x = (11 % 3) + 12;

Copyright © 2010

Assignment Compatibilities

• Java is said to be strongly typed.
– You can’t, for example, assign a floating point value to a variable

declared to store an integer.

int myNumber = 7.5; // Error: Compiler will not allow

• Sometimes conversions between numbers are possible.
double myVariable = 7;

is possible even if myVariable is of type double.
In this case, the compiler will automatically convert the
integer 7 into a floating point 7.0.

• This automatic conversion is called a coercion.

Copyright © 2010

Assignment Compatibilities

• A value of one type can be assigned to a variable of any
type further to the right
byte --> short --> int --> long --> float --> double

but not to a variable of any type further to the left.

• E.g., you can assign a value of type char to a variable of
type int, or a value of type int to a variable of type
double, but you cannot assign a value of type double to
a variable of type int.

Copyright © 2010

Type Casting
• A type cast temporarily changes the value of a

variable from the declared type to some other type.
It does not change the variable.

• For example,
double distance;
distance = 9.0;
int points;
points = (int)distance;

the above is illegal without the (int)

• Uses:
– To promote an int into a double to get real-number

division from the / operator
– To truncate a double from a real number to an integer

Copyright © 2010

Type Casting, cont.

• The value of (int)distance is 9, but the value of
distance, both before and after the cast, is 9.0.

• Any nonzero value to the right of the decimal point is
truncated rather than rounded.
– Thus if the value of distance was 9.7, the value of

(int)distance would still be 9

– Again, the value of distance is not changed and
would still be 9.7.

Examples:
double result = (double) 19 / 5; // 3.8
int result2 = (int) result; // 3

Copyright © 2010

• Type casting has high precedence and only casts the
item immediately next to it.
– double x = (double) 1 + 1 / 2; // 1.0
– double y = 1 + (double) 1 / 2; // 1.5

• You can use parentheses to force evaluation order.
– double average = (double) (a + b + c) / 3;

• A conversion to double can be achieved in other ways.
– double average = 1.0 * (a + b + c) / 3;
– double average = (a + b + c) / 3.0;

More about type casting

