CS101

Java Programming

Fall 2012
Thursdays 10:00-12:00noon

RF Academy

Announcements

e Any Questions?!?!

Copyright © 2010

String/char guestion

« A Caesar cipher is a simple encryption where a message
IS encoded by shifting each letter by a given amount.
— e.g.withashiftof3, A->D, H>K, X—>A andZ—>C

 Write a program that reads a message from the user and
performs a Caesar cipher on its letters:

Your secret message: Brad thinks Angelina is cute.
Your secret key: 10
The encoded message: Ibkn drsxuc kxgovsxk sc medo.

Copyright © 2010

Strings answer 1

// This program reads a message and a secret key from the user and
// encrypts the message using a Caesar cipher, shifting each letter.

import java.util.*;
public class SecretMessage {
public static void main(String[] args) {
Scanner console = new Scanner(System.in);
System.out.print(*Your secret message: ');
String message = console.nextLine();
message = message.toLowerCase();

System.out.print("Your secret key: ");
iInt key = console.nextInt();

String hidden = encode(message, key);

System.out.print(""The encoded message: " + hidden);

Copyright © 2010

Strings answer 2

// This method encodes the given text string using a Caesar

// cipher, shifting each letter by the given number of places.
// Assumes shift is between -26 and +26 exclusive

public static String encode(String text, iInt shift) {
String result = "'
for (int 1 = 0; 1 < text.length(Q); 1++) {
char letter = text.charAt(1);

// shift only letters (leave other characters alone)
IT (letter >= "a” && letter <= "z7) {

letter = (char) (letter + shift);

// may need to wrap around
iIT (letter > "z7) {

letter = (char) (letter - 26);
} else 1Tt (letter < "a") {

letter = (char) (letter + 26);
}
}

result = result + letter;

}

return result;
}
}

Copyright © 2010

Character wrapper class

e Just as the Math class provided us with many useful
mathematical functions, the Character class provides
many character-related functions

e These are all static methods
— Called on the Character class

 They take a single character as a parameter

— Already saw earlier that we cannot call methods directly on data
of type char, since char is a primitive type

« Example:
Character.i1sLetter(ch) //ch 1s var of type char

Copyright © 2010

Static Methods In Class Character

=]
s a B
— - = T [} =]
=% w @O w“ @ 2 S
£ 2 23 22 = 232
= a /s S b S &2
toUpperCase Convert to char char Character.toUpperCase('a') Both
uppercase Character.toUpperCase('A') return 'A'
toLowerCase Convert to char char Character.tolLowerCase('a') Both
lowercase Character.tolLowerCase('A") return 'a'
isUpperCase Test for char boolean Character.isUpperCase('A') true
uppercase Character.isUpperCase('a') false
isLowerCase Test for char boolean Character.islLowerCase('A') false
lowercase Character.islLowerCase('a') true
isWhitespace Test for char boolean Character.isWhitespace(' ') true
whitespace Character.isWhitespace('A') false
Whitespace characters are those that print as white space, such as the blank, the tab character (*\t"'),
and the line break character ('\n").
isLetter Test for char boolean Character.islLetter('A") true
being a letter Character.isLetter('%"') false
isDigit Test for char boolean Character.isDigit('5"') true
being a digit Character.isDigit('A") false

Copyrig

Precondition and Postcondition Comments

« The precondition for a method states the
condition(s) that must be true before the method
IS iInvoked.

— If the precondition is not met, the method
should not be used and cannot be expected to
perform correctly.

* The postcondition describes the result(s) of the
method invocation, or what will be true after the
method Is done.

Copyright © 2010

Precondition and Postcondition Comments

 If the precondition is satisfied and the method is executed,
the postcondition will be true.

« Example
/**
Precondition: The integer parameter i1s nonnegative (>=0).
Postcondition: The factorial i1s returned.
*/
public static int factorial(int n) {

}

Copyright © 2010

Precondition and Postcondition Comments

« |If a returned value is the only postcondition, the
postcondition often is not stated (as it is fairly obvious).

* The statement of the precondition and the postcondition
typically precede the associated method in the form of a
javadoc comment (/**...*/)

— Let’s see a quick demo of javadoc comments

* Important: We will use JavaDoc comments to document
all our methods from this point forward.

Copyright © 2010

Comment types

e /** comments are treated specially by the compiler

— They will produce JavaDoc documentation that can be
displayed by an IDE

— You use these to comment method headers and class headers
— You provide information on how to use the method or class
 These are intended for the user, not other programmers

e // comments are ignored by the compiler

— You use these to document the internal workings of your
method or class

— You provide information on how the method or class works
» These are intended for other programmers, not the user

Copyright © 2010

Verifying Preconditions

* A method should always verify any preconditions before
It starts its real work.

« If a precondition is found not to be satisfied, the method
can take one of several actions:
— Return an “error” value
— Stop the execution of the program

* Use an assertion (we will visit these later)
 Use System.exit()

— Throw an exception
* Read pp. 262-266

« Example: Let’s verify the precondition of the Caesar
cipher’'s encode method.

Copyright © 2010

Exception example

/**

* encode --

* This method encodes the given text string using a Caesar

* cipher, shifting each letter by the given number of places.
* Only lower case letters are shifted.

* Precondition: shift amount is between -26 & +26 (exclusive)
* @param text -- string to encode

* @param shift -- shift amount

* @return -- the encoded string

*/

public static String encode(String text, int shift) {
if (shift<=-26 || shift>=26) {
throw new IllegalArgumentException(*'lIllegal shift amount');
+

String result = ,
for (int 1 = 0; 1 < text.length(); i++) {
char letter = text.charAt(1);

//etc. ..

Copyright © 2010

