
CS101
Java Programming

Fall 2012
Thursdays 10:00-12:00noon

RF Academy

Copyright © 2010

Announcements

• Any Questions?!?!

Copyright © 2010

String/char question

• A Caesar cipher is a simple encryption where a message
is encoded by shifting each letter by a given amount.
– e.g. with a shift of 3, A D, H K, X A, and Z C

• Write a program that reads a message from the user and
performs a Caesar cipher on its letters:

Your secret message: Brad thinks Angelina is cute.
Your secret key: 10
The encoded message: lbkn drsxuc kxqovsxk sc medo.

Copyright © 2010

Strings answer 1

// This program reads a message and a secret key from the user and
// encrypts the message using a Caesar cipher, shifting each letter.

import java.util.*;

public class SecretMessage {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);

System.out.print("Your secret message: ");
String message = console.nextLine();
message = message.toLowerCase();

System.out.print("Your secret key: ");
int key = console.nextInt();

String hidden = encode(message, key);

System.out.print("The encoded message: " + hidden);

}

...

Copyright © 2010

Strings answer 2
// This method encodes the given text string using a Caesar
// cipher, shifting each letter by the given number of places.
// Assumes shift is between -26 and +26 exclusive
public static String encode(String text, int shift) {

String result = "";
for (int i = 0; i < text.length(); i++) {

char letter = text.charAt(i);

// shift only letters (leave other characters alone)
if (letter >= 'a' && letter <= 'z') {

letter = (char) (letter + shift);

// may need to wrap around
if (letter > 'z') {

letter = (char) (letter - 26);
} else if (letter < 'a') {

letter = (char) (letter + 26);
}

}
result = result + letter;

}
return result;

}
}

Copyright © 2010

Character wrapper class

• Just as the Math class provided us with many useful
mathematical functions, the Character class provides
many character-related functions

• These are all static methods
– Called on the Character class

• They take a single character as a parameter
– Already saw earlier that we cannot call methods directly on data

of type char, since char is a primitive type

• Example:
Character.isLetter(ch) //ch is var of type char

Copyright © 2010

Static Methods in Class Character

Copyright © 2010

Precondition and Postcondition Comments

• The precondition for a method states the
condition(s) that must be true before the method
is invoked.
– If the precondition is not met, the method

should not be used and cannot be expected to
perform correctly.

• The postcondition describes the result(s) of the
method invocation, or what will be true after the
method is done.

Copyright © 2010

Precondition and Postcondition Comments

• If the precondition is satisfied and the method is executed,
the postcondition will be true.

• Example
/**

Precondition: The integer parameter is nonnegative (>=0).
Postcondition: The factorial is returned.

*/
public static int factorial(int n) {

...

}

Copyright © 2010

Precondition and Postcondition Comments

• If a returned value is the only postcondition, the
postcondition often is not stated (as it is fairly obvious).

• The statement of the precondition and the postcondition
typically precede the associated method in the form of a
javadoc comment (/**…*/)

– Let’s see a quick demo of javadoc comments

• Important: We will use JavaDoc comments to document
all our methods from this point forward.

Copyright © 2010

Comment types

• /** comments are treated specially by the compiler
– They will produce JavaDoc documentation that can be

displayed by an IDE
– You use these to comment method headers and class headers
– You provide information on how to use the method or class

• These are intended for the user, not other programmers

• // comments are ignored by the compiler
– You use these to document the internal workings of your

method or class
– You provide information on how the method or class works

• These are intended for other programmers, not the user

Copyright © 2010

Verifying Preconditions

• A method should always verify any preconditions before
it starts its real work.

• If a precondition is found not to be satisfied, the method
can take one of several actions:
– Return an “error” value
– Stop the execution of the program

• Use an assertion (we will visit these later)
• Use System.exit()

– Throw an exception
• Read pp. 262-266

• Example: Let’s verify the precondition of the Caesar
cipher’s encode method.

Copyright © 2010

Exception example
/**
* encode --
* This method encodes the given text string using a Caesar
* cipher, shifting each letter by the given number of places.
* Only lower case letters are shifted.
* Precondition: shift amount is between -26 & +26 (exclusive)
* @param text -- string to encode
* @param shift -- shift amount
* @return -- the encoded string
*/
public static String encode(String text, int shift) {

if (shift<=-26 || shift>=26) {
throw new IllegalArgumentException("Illegal shift amount");

}
String result = "";
for (int i = 0; i < text.length(); i++) {

char letter = text.charAt(i);

//etc...
}

