
CS101
Java Programming

Fall 2012
Thursdays 10:00-12:00noon

RF Academy

Copyright © 2010

Announcements

• Any Questions?!?!

Copyright © 2010

Nested if/else question

Formula for body mass index (BMI):

• Write a program that produces output like the following:
This program reads data for two people and computes
their body mass index (BMI) and weight status.

Enter next person's information:
height (in inches)? 73.5
weight (in pounds)? 230
BMI = 29.93
overweight

Enter next person's information:
height (in inches)? 71
weight (in pounds)? 220.5
BMI = 30.75
obese

Difference = 0.82

7032 
height
weightBMI

BMI Weight class
below 18.5 underweight
18.5 - 24.9 normal
25.0 - 29.9 overweight
30.0 and up obese

Copyright © 2010

One-person, no methods
import java.util.*;

public class BMI {
public static void main(String[] args) {

System.out.println("This program reads ... (etc.)");
Scanner console = new Scanner(System.in);

System.out.println("Enter next person's information:");
System.out.print("height (in inches)? ");
double height = console.nextDouble();

System.out.print("weight (in pounds)? ");
double weight = console.nextDouble();

double bmi = weight * 703 / height / height;

System.out.printf("BMI = %.2f\n", bmi);
if (bmi < 18.5) {

System.out.println("underweight");
} else if (bmi < 25) {

System.out.println("normal");
} else if (bmi < 30) {

System.out.println("overweight");
} else {

System.out.println("obese");
}

}
}

Extending to two people

• If we want our program to process two people, we could
copy & paste the code a second time
– Poor solution as it results in redundant code

• Thus will define methods to do the work for us
– Eliminates redundancy
– Simplifies the program via structural decomposition

• But what methods and what decomposition?
– Many choices are possible
– Some lead to a good design while others are poor

Copyright © 2010

Copyright © 2010

Procedural heuristics

1. Each method should have a clear set of responsibilities.

2. No method should do too large a share of the overall
task.

3. Minimize coupling and dependencies between
methods.

4. The main method should read as a concise summary of
the overall set of tasks performed by the program.

5. Data should be declared/used at the lowest level
possible.

Copyright © 2010

Good solution

// This program computes two people's body mass index (BMI) and
// compares them. The code uses Scanner for input, and parameters/returns.

import java.util.*; // so that I can use Scanner

public class BMI {
public static void main(String[] args) {

introduction();
Scanner console = new Scanner(System.in);
double bmi1 = person(console);
double bmi2 = person(console);

// report overall results
report(1, bmi1);
report(2, bmi2);
System.out.println("Difference = " + Math.abs(bmi1 - bmi2));

}

// prints a welcome message explaining the program
public static void introduction() {

System.out.println("This program reads ...");
// ...

}
...

Copyright © 2010

Good solution, cont'd.
// reads information for one person, computes their BMI, and returns it
public static double person(Scanner console) {

System.out.println("Enter next person's information:");
System.out.print("height (in inches)? ");
double height = console.nextDouble();

System.out.print("weight (in pounds)? ");
double weight = console.nextDouble();
System.out.println();

return bmi(height, weight);
}

// Computes/returns a person's BMI based on their height and weight.
public static double bmi(double height, double weight) {

return weight * 703 / height / height;
}

// Outputs information about a person's BMI and weight status.
public static void report(int number, double bmi) {

System.out.printf("Person %d: BMI = %.2f\n", number, bmi);
if (bmi < 18.5) {

System.out.println("underweight");
} else if (bmi < 25) {

System.out.println("normal");
} else if (bmi < 30) {

System.out.println("overweight");
} else {

System.out.println("obese");
}

}
}

Copyright © 2010

Announcements
• Read sections 5.1-5.2

• Any Questions?!?!

Copyright © 2010

Categories of loops

• definite loop: Executes a known number of times.
– The for loops we have seen are definite loops.

– Examples:
• Print "hello" 10 times.
• Find all the prime numbers up to an integer n.
• Print each odd number between 5 and 127.

• indefinite loop: One where the number of times its body
repeats is not known in advance.
– Examples:

• Prompt the user until they type a non-negative number.
• Print random numbers until a prime number is printed.
• Repeat until the user types "q" to quit.

Copyright © 2010

The while loop

• while loop: Repeatedly executes its
body as long as a logical test is true.

while (test) {
statement(s);

}

• Example:
int num = 1; // initialization
while (num <= 200) { // test

System.out.print(num + " ");
num = num * 2; // update

}

– OUTPUT: 1 2 4 8 16 32 64 128

Copyright © 2010

Example while loop
// finds a number's first factor other than 1
Scanner console = new Scanner(System.in);
System.out.print("Type a number: ");
int number = console.nextInt();
int factor = 2;
while (number % factor != 0) {

factor++;
}
System.out.println("First factor: " + factor);

• Example log of execution:
Type a number: 91
First factor: 7

• while is better than for here because we don't know
how many times we will need to increment to find the
factor.

Copyright © 2010

for vs. while loops

• The for loop is just a specialized form of the while loop.
– The following loops are equivalent (more or less):

for (int num = 1; num <= 200; num = num * 2) {
System.out.print(num + " ");

}

// actually, not a very compelling use of a while loop
// (a for loop is better because the # of reps is definite)
int num = 1;
while (num <= 200) {

System.out.print(num + " ");
num = num * 2;

}

Copyright © 2010

Mini-exercise

• What while loop is essentially equivalent to the
following for loop?

for (int i = 0; i < 10; i++) {
System.out.println(i);

}

Solution:
int i = 0;
while (i < 10) {

System.out.println(i);
i++;

}

Copyright © 2010

while loop vs. if statement

• The while loop and the if statement look a lot alike
– They only differ by a single keyword

• But they act very differently
– You need to be careful to chose the one that is appropriate for a

given situation

while (test) {
statement(s);

}

if (test) {
statement(s);

}

Copyright © 2010

while and Scanner

• while loops are often used with Scanner input.
– You don't know many times you'll need to re-prompt the user if

they enter bad data. (an indefinite loop!)

• Write code that repeatedly prompts until the user types a
non-negative number, then computes its square root.
– Example log of execution:

Type a non-negative integer: -5
Invalid number, try again: -1
Invalid number, try again: -235
Invalid number, try again: -87
Invalid number, try again: 121
The square root of 121 is 11.0

Copyright © 2010

while loop answer

System.out.print("Type a non-negative integer: ");
int number = console.nextInt();

while (number < 0) {
System.out.print("Invalid number, try again: ");
number = console.nextInt();

}

System.out.println("The square root of " + number +
" is " + Math.sqrt(number));

– Notice that number has to be declared outside the loop.
– Common newbie mistake is to use an if-statement here

• But what if the next number they input is also negative?

Copyright © 2010

While loop question

• Write a method named digitSum that accepts an
integer as a parameter and returns the sum of the digits
of that number.
– digitSum(29107) returns 2+9+1+0+7 or 19

– You may assume that the number is non-negative.

– Hint: does it matter what order we process the digits?
– Is there an order that makes this problem easier?
– How do we extract the last digit from the number?
– Once extracted, how do we delete the last digit from the number?
– If we do this repeatedly, when should we stop?

Copyright © 2010

While loop answer

• The following code implements the method:

public static int digitSum(int n) {
int sum = 0;
while (n > 0) {

sum += n % 10; // add last digit to sum
n = n / 10; // remove last digit

}
return sum;

}

• But this code changes the value of n, the parameter we
received! Is that okay?
– Yes, because of call-by-value semantics.

Copyright © 2010

A deceptive problem

• Problem: Write a static method named printNumbers
that prints each number from 1 to a given maximum,
separated by commas; i.e., a comma separated list.

For example, the method call:
printNumbers(5)

should print:
1, 2, 3, 4, 5

Copyright © 2010

Flawed solutions
• public static void printNumbers(int max) {

for (int i = 1; i <= max; i++) {
System.out.print(i + ", ");

}
System.out.println(); // to end the line of output

}

– Output from printNumbers(5): 1, 2, 3, 4, 5,

• public static void printNumbers(int max) {
for (int i = 1; i <= max; i++) {

System.out.print(", " + i);
}
System.out.println(); // to end the line of output

}

– Output from printNumbers(5): , 1, 2, 3, 4, 5

Copyright © 2010

Fence post analogy
• We print n numbers but need only n - 1 commas.
• This problem is similar to the task of building a fence

with lengths of wire separated by posts.
– often called a fencepost problem
– If we repeatedly place a post and wire,

the last post will have an extra dangling wire.

– A flawed algorithm:
for (length of fence) {

place a post.
attach some wire.

}

Copyright © 2010

Fencepost loop

• The solution is to add an extra statement outside the
loop that places the initial "post."
– This is sometimes also called a fencepost loop or a

"loop-and-a-half" solution.

– The revised algorithm:
place a post.
for (length of fence - 1) {

attach some wire.
place a post.

}

Copyright © 2010

Fencepost method solution
public static void printNumbers(int max) {

System.out.print(1);
for (int i = 2; i <= max; i++) {

System.out.print(", " + i);
}
System.out.println(); // to end the line

}

• Alternate solution: Either first or last "post" can be taken out:
public static void printNumbers(int max) {

for (int i = 1; i <= max - 1; i++) {
System.out.print(i + ", ");

}
System.out.println(max); // to end the line

}

Copyright © 2010

Another fencepost question

• Write a method printPrimes that prints all prime
numbers up to a given maximum in the following format.
– Example: printPrimes(50) prints
[2 3 5 7 11 13 17 19 23 29 31 37 41 43 47]

• To find primes, write a method countFactors which
returns the number of factors of an integer.
– countFactors(60) returns 12 because

1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60 are factors of 60.

• How can we tell if one number is a factor of another?
• Given countFactors(), how do we know if a number is prime?

Copyright © 2010

Fencepost answer
public class Primes {

public static void main(String[] args) {
printPrimes(50);
printPrimes(1000);

}

// Prints all prime numbers up to the given max.
// Precondition: max is >= 2
public static void printPrimes(int max) {

System.out.print("[2");
for (int i = 3; i <= max; i++) {

if (countFactors(i) == 2) { // is i prime?
System.out.print(" " + i);

}
}
System.out.println("]");

}

Copyright © 2010

Fencepost answer, continued
// Returns how many factors the given number has.
public static int countFactors(int number) {

int count = 0;
for (int i = 1; i <= number; i++) {

if (number % i == 0) {
count++; // i is a factor of number

}
}
return count;

}
}

