
CS101
Java Programming

Winter 2013

Thursdays 10:00-12:00noon

RF Academy

Copyright © 2010

Announcements

• Questions??

Copyright © 2010

Boolean return questions

• hasAnOddDigit : returns true if any digit of an integer is odd.

– hasAnOddDigit(4822116) returns true

– hasAnOddDigit(2448) returns false

• allDigitsOdd : returns true if every digit of an integer is odd.

– allDigitsOdd(135319) returns true

– allDigitsOdd(9174529) returns false

• isAllVowels : returns true if every char in a String is a

vowel.

– isAllVowels("eIeIo") returns true

– isAllVowels("oink") returns false

Copyright © 2010

Boolean return answers
public static boolean hasAnOddDigit(int n) {
 while (n != 0) { // while n still has digits
 if (n % 2 != 0) { // check whether last digit is odd
 return true;
 }
 n = n / 10; // remove last digit
 }
 return false;
}

public static boolean allDigitsOdd(int n) {
 while (n != 0) {
 if (n % 2 == 0) { // check whether last digit is even
 return false;
 }
 n = n / 10;
 }
 return true;
}

public static boolean isAllVowels(String s) {
 for (int i = 0; i < s.length(); i++) {
 String letter = s.substring(i, i + 1);
 if (!isVowel(letter)) { // isVowel defined a bit later
 return false;
 }
 }
 return true;
}

Copyright © 2010

Short-circuit Evaluation

• Sometimes only part of a boolean expression needs to

be evaluated to determine the value of the entire

expression.

– If the first (left) operand associated with an || is true, the

expression is true.

– If the first (left) operand associated with an && is false, the

expression is false.

• This is called short-circuit or lazy evaluation.

Copyright © 2010

Short-circuit Evaluation, cont.

• Short-circuit evaluation is not only efficient, sometimes it

is essential!

• A run-time error can result, for example, from an attempt

to divide by zero.
if ((number != 0) && (sum/number > 5)) { ...

• Complete evaluation can be achieved by substituting &

for && or | for ||.

Copyright © 2010

De Morgan's Law

• De Morgan's Law:
Rules used to negate or reverse boolean expressions.
– Useful when you want the opposite of a known boolean test.

– Example:

Original Expression Negated Expression Alternative

a && b !a || !b !(a && b)

a || b !a && !b !(a || b)

Original Code Negated Code

if (x == 7 && y > 3) {

 ...

}

if (x != 7 || y <= 3) {

 ...

}

Copyright © 2010

De Morgan Mini-exercises

• For the following statements, negate the test in the “if”:

Original Code Negated Code

if (0<=x && x<=10)) {

 ...

}

if (a<10 || b<10)) {

 ...

}

if (x<0 || x>10) {

 ...

}

if (a>=10 && b>=10) {

 ...

}

Copyright © 2010

Boolean practice questions

• Write a method named isVowel that returns whether a

String is a vowel (a, e, i, o, or u), case-insensitively.

– isVowel("q") returns false

– isVowel("A") returns true

– isVowel("e") returns true

• Change the above method into an isNonVowel that

returns whether a String is any character except a

vowel.

– isNonVowel("q") returns true

– isNonVowel("A") returns false

– isNonVowel("e") returns false

Copyright © 2010

Boolean practice answers

// Enlightened version. I have seen the true way (and false way)

public static boolean isVowel(String s) {

 return s.equalsIgnoreCase("a") || s.equalsIgnoreCase("e") ||

 s.equalsIgnoreCase("i") || s.equalsIgnoreCase("o") ||

 s.equalsIgnoreCase("u");

}

// Enlightened "Boolean Zen" version

public static boolean isNonVowel(String s) {

 return !s.equalsIgnoreCase("a") && !s.equalsIgnoreCase("e") &&

 !s.equalsIgnoreCase("i") && !s.equalsIgnoreCase("o") &&

 !s.equalsIgnoreCase("u");

 // or, return !isVowel(s);

}

Copyright © 2010

Announcements

• Read sections 5.4-5.6

• Questions??

Copyright © 2010

Invalid user input

• Recall: When the token doesn't match the type the
Scanner tries to read, the program crashes.

 Example:

 Scanner console = new Scanner(System.in);

 System.out.print("How old are you? ");

 int age = console.nextInt();

 Output (user's input is underlined):

 What is your age? Timmy

 java.util.InputMismatchException

 at java.util.Scanner.throwFor(Unknown Source)

 at java.util.Scanner.next(Unknown Source)

 at java.util.Scanner.nextInt(Unknown Source)

 ...

Copyright © 2010

Testing for valid user input

• The Scanner class has methods that can be used to "look ahead"
to test whether the upcoming input token is of a given type:

• Each method waits for the user to type input and press Enter, then
reports a true or false answer based on what was typed.

– The hasNext and hasNextLine methods are not useful until we learn
how to read input from files in Chapter 6.

Method Description

hasNext() Whether the next token can be read as a String

(always true for console input)

hasNextInt() Whether the next token can be read as an int

hasNextDouble() Whether the next token can be read as a double

hasNextLine() Whether the next line of input can be read as a
String (always true for console input)

Copyright © 2010

Scanner condition example

• The hasNext methods are useful for testing whether the
user typed the kind of token we wanted.
– This way we can avoid potential exceptions from input mismatches.

– Example:

Scanner console = new Scanner(System.in);

System.out.print("How old are you? ");

if (console.hasNextInt()) {

 int age = console.nextInt(); // will not throw an exception

 System.out.println("Retire in " + (65 - age) + " years.");

} else if (console.hasNextDouble()) {

 System.out.println("Please use a whole number for your age!");

 console.nextDouble(); // consume the bad data

} else {

 System.out.println("You did not type a number.");

 console.next(); // consume the bad data as a string

}

Copyright © 2010

Infinite Loops

• A loop which repeats without ever ending is called an

infinite loop.

• If the controlling boolean expression never becomes
false, a while loop or a do-while loop will repeat

without ending.

• Use Ctrl-C to stop a program caught in an infinite loop

[Eclipse also has a terminate button on the console

window (it’s the red square)]

Copyright © 2010

break Statement

• break statement: Immediately exits a loop.

– Can be used to write a loop whose test is in the middle.

– Such loops are often called "forever" loops because their
header's boolean test is often changed to a trivial true.

 while (true) {

 statement(s);

 if (test) {
 break;

 }

 statement(s);
 }

– break is considered to be bad style by some programmers.

– Not necessary for stuff we do in this class. Do not use it on
CS101 homework! Rather re-write the loop with a different
structure.

Copyright © 2010

Sentinel loop with break

• A working sentinel loop solution using break:

Scanner console = new Scanner(System.in);

int sum = 0;

while (true) {

 System.out.print("Enter a number (-1 to quit): ");

 int number = console.nextInt();

 if (number == -1) { // don't add -1 to sum

 break;

 }

 sum = sum + number; // number != -1 here

}

System.out.println("The total was " + sum);

Copyright © 2010

Thoughts on break

• Literal meaning is go to after the loop right now

– Needed to solve certain types of problems – just not any

problems you will encounter in CS101

• Affects assertions (which we will talk about next)

– No longer know whether the loop test is false right after the loop

• Can also use return anywhere in a method

– Returns “right now” to point of the call

