Econometrics Notes 2011

Week 2: Ordinary Least Squares
(S&W, Chapters 4-7, 9)

1. Linear regression with one regressor

1. The model

Example: Suppose an immigrant association is interested in learning the effect of improving immigrants’ native language proficiency on their wages (causal question: “effect of A on B”). 
The “intuitive” thing to do would be to look for data on a sample of immigrants, with information on both language proficiency and wages. Just like in the example of last week we “compared means” as an intuitive approximation to a causal question, when the “treatment variable” is continuous, the “intuitive” thing to do is to calculate the correlation between the two variables, or to run a linear regression.
Say we find survey data on a sample of immigrants’ language proficiency level (say, the score in a language test) and their wages.
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We want to know how wages would change as someone improves her language proficiency.

Linear regression with one regressor: 
yi =  + xi + ui
(a straight line relating x and y, plus an extra term u)
yi: monthly wage 

xi: test score from 0 to 100

y is the dependent variable (left-hand variable)
x is the independent or explanatory variable, or regressor (right-hand variable)
i refers to each observation, i=1,…, n

 and  are the parameters or coefficients
 is the constant or intercept
 is the slope (the change in y associated with a 1 unit change in x)
u is the error term (includes all other factors that determine the value of y other than x, for a specific observation i). Examples?

What we’re after is !

(illustrate each in the graph on the board)
2. Estimating the coefficients of the linear regression model
We have data on x and y for a random sample, how can we estimate  and ? 
 and  are unknown features of the joint distribution of x and y. The econometric problem is how to estimate them with data on x and y from a random sample.)
The most common method for choosing a straight line that approximates the relationship between x and y is OLS.

We choose the values of  and  that minimize the sum of (vertical) distances from each data point to the line.

· The distance is measured as the difference between y and the prediction given by the line, for a given value of x (squared).

The estimators of  and  that minimize the sum of square “mistakes” are called the OLS estimators of  and .

By solving the minimization problem, we can get an expression for these estimators:
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The predicted value of Yi is 
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The residual for the ith observation is 
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All of these are computed from a sample of n observations of Xi and Yi, i=1,…,n. They are estimates of the unknown true population intercept, slope, and error term.

Example.
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(SLIDE)

Interpret: 

19 is the increase in earnings associated with one more point in the test

53 is the predicted monthly earnings of someone with 0 in the test

Prediction: earnings if x=100 (1953) (show in graph)

Stata calculates the OLS estimator with the command: reg y x

3. Measures of fit
How “close” is the OLS line to the data? How well does the regression line describe the data? Are the observations tightly clustered around the line, or are they very spread out?

The R2 measures, between 0 and 1, the fraction of Y’s sample variance “explained by” (predicted by) X. 

Note that 
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. The R2 is the ratio of the sample variance of 
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 to the sample variance of Yi (or, the ratio of the “explained sum of squares” to the “total sum of squares”).
In our example, R2=0.788

In the case of linear regression with one regressor, it is just the correlation coefficient, squared.

4. The Least Squares Assumptions
There are 3 conditions that, if they hold, guarantee that OLS estimators are “appropriate”. More specifically, that they have normal sampling distributions. This allows us to do hypothesis testing.

Moreover, these 3 conditions will help us organize the problems that may arise when using OLS regressions.

OLS Assumption #1: The conditional distribution of u given X has mean 0 (i.e., the factors included in u that determine Y are unrelated to X). Or, given a value of X, the mean of the distribution of u (the “other factors”) is 0. This implies that X and u are uncorrelated (have 0 correlation). E[ui|Xi]=0.
OLS Assumption #2: (Xi, Yi), i=1,…,n are independently and identically distributed across observations (i.i.d.). This is about how the sample is drawn. For example, if the observations have been obtained by simple random sampling from a large population, this will hold. This assumption is reasonable for many ways of data collection. For example, a survey of a randomly chosen sample from a population. But not all! (e.g., data from the same unit of observation over time).
OLS Assumption #3: Large outliers are unlikely (i.e., observations with values of X or Y very far from the normal range). This is bc the OLS results are very sensitive to extreme observations. Formally, X e Y must have nonzero finite 4th moments (finite kurtosis): 
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. This is plausible in many applications with economic data (variables with finite range, normal distribution, etc).
These assumptions play 2 roles:

If these assumptions hold, 
1) The OLS estimators have sampling distributions that are normal in large samples, as we will see next.
2) They are useful for organizing the factors that pose difficulties for OLS regression. The first assumption is the most important here.

5. The sampling distribution of the OLS estimators
Since we calculate  and  from a randomly drawn sample, these estimators are random variables themselves, with a probability distribution (each sample will lead to different values). What do these sampling distributions look like? 
If the sample is large, those distributions are approximately normal because of the CLT.

CLT: If n is large, then the sampling distribution of the sample average is approximately normal.

Results about the sampling distribution of hat and hat :

1) For any n, if the 3 OLS assumptions hold, then hat and hat are unbiased estimators of  and : E[hat]= and E[hat]=
2) Moreover, if n is large, by the CLT, the sampling distribution of hat and hat is approximately bivariate normal. (how large? >50 enough) Thus the marginal distributions of hat and hat are normal in large samples.
Since sample sizes are usually quite large, we will just take this approximation as good in general, unless we face a particularly small data set.

3) These results in turn imply that hat and hat are consistent (when n is large, they will be close to the true population coefficients with high probability). This is because their variance decreases as n increases.
The fact that hat and hat are distributed normally allows us to use a sample of data to make inferences about the true population values of the regression coefficients.

6. Hypothesis tests

What can we say about  (the population parameter) if we only have a sample of data?
Ej: Does speaking the local language have an effect on wages?

We can test a hypothesis about the population value of  using a technique similar to what we did when we tested hypothesis about the population mean (Chapter 3), since the sampling distribution of  is normal, just like the distribution of the sample average.

For example, if our null hypothesis is H0: =0, and H1: !=0, steps to follow:

1) Formulate H0 and H1

2) Calculate the SE of bhat, which is an estimate of the standard deviation (complicated formula, Stata will produce it for you). SE = 2.37

3) Calculate the t-statistic: t = (bhat – b)/SE(bhat) = (19.44-0)/2.37=8.2

4) Calculate the p-value: p = PrH0 ( | t |> | tact | ) = Pr( | Z | > | tact | ) = 2(-| tact| )= 2(-8.2) < 0.0028 (see normal table)

5) If p is small, e.g. p<0.005, this is evidence against H0 (b=0). A small p indicates that obtaining a bhat that different from 0 due to sampling variability would be very unlikely if b was in fact equal to 0.

Conclusion: We reject H0: b=0, i.e., b is different from 0.

Caution: If N is small, then t is not normal (under additional assumptions, it’s a Student t, but we will never use this! We will always work with the normal approximation).

Confidence intervals

A 95% confidence interval for b is a range of values that contains the true value of b in 95% of all possible samples.

Since bhat is distributed normally and centered around b, then a 95% confidence interval for b is:

[bhat – 1.96 SE(bhat), bhat + 1.96SE(bhat)]

Example: [1.94 – 1.96*2.37, 1.94 + 1.96*2.37] = [14.8, 24.1]

7. Homoscedasticity and heteroscedasticity

The OLS assumptions don’t assume anything regarding the variance of u given x.

The error term u is said to be “homoscedastic” is var(ui | x) is constant for i=1,…n, and in particular, it does not depend on xi.

If this does not hold, then the error term is “heteroscedastic”.

(graphs on blackboard)

If the error term is homoscedastic, then OLS has even more “good properties” (we can prove that, among all unbiased linear estimators of b, it is the lowest variance one: it is efficient).

Moreover, the formula for the SE of a and b simplifies a lot.

However, homoscedasticity is a strong assumption. If we assume homoscedasticity and the error term is in fact heteroscedastic, this will give us incorrect values for the SE and out t-statistics!

Thus, it is always better to not assume homoscedasticity, since it is more robust.

In statistical packages like Stata, however, the default option is homoscedasticity. Therefore, we should remember to always use the option of heteroscedastic errors: reg y x, robust.

8. Model specification
What happens if the 1st OLS assumption does not hold? (there are reasons to think that u is related to x).

Ex: What if speaking the local language is correlated with education level or individual skill, and those also affect wages?

If this is the case, then bhat will be biased, i.e. E[bhat]!=b (omitted variable bias)
If x, say, speaking the local language, is correlated with a variable that we have omitted (say, educational attainment) and that also affects y (wage), then our OLS estimator is biased.
Two conditions are required for this bias to appear:

1) The omitted variable is correlated with x.

2) The omitted variable affects y.

If this is the case, then OLS1 does not hold, and as a result, bhat is not unbiased nor consistent.

What to do? How about we include the omitted variable in the model? Ex: include educational attainment as an additional regressor. This way, we would be looking at the effect of language proficiency on wages, holding educational attainment constant). This is what multiple linear regression does.

2. Linear regression with multiple regressors
1. The model
yi =  + x1i + x2i + ui
(k=2)
b1 is not the effect on y of a change in x1 of 1 unit, holding x2 constant (or “controlling” for x1).

In practice, there can be more than one “omitted variable” (k>2).

2. The OLS estimator

The method is the same as in the case of one regressor. We minimize the sum of squares of the prediction errors. This leads to OLS estimators ahat, b1hat and b2hat.

Ex: yi = 69 + 18.6X1 + 64.5 X2 + ui

3. Measures of fit

We can still calculate the R-squared (the fraction of the variance of y that is “explained” by the x’s): R-sq = 0.792.

4. The OLS assumptions in multiple regression

OLS Assumption 1: E[ui|X1i,… Xki] = 0 (the conditional distribution of u given X1,…, Xk has mean zero).

OLS 2: (X1i, …, Xki, Yi) are i.i.d. (i=1,…, n)

OLS 3: Outliers are unlikely.

OLS 4: No perfect collinearity.

Perfect collinearity appears when one of the x’s is a perfect linear function of other x’s.

5. The sampling distribution of the OLS estimator

If all 4 conditions hold, then ahat, b1hat and b2hat are unbiased and consistent as estimators of a, b1 and b2.

Moreover, if the sample is large, the sampling distribution of a, b1,…,bk is approximately normal (multivariate), because we can apply the CLT.

6. Hypothesis tests
i) One coefficient: Exactly the same as in linear regression with one regressor.
ii) Two or more coefficient (joint hypotheses); Ex. H0: b1=0 and b2=0 versus H1: b1!=0 and/or b2!=0.

This is more complicated than just running the two separate tests for b1 and b2! This wouldn’t be correct, since b1 abd b2 are not independent.

We use the F-statistic, which combines the t-statistics of the several coefficients in H0. 

The F-stat for our example is: (formula)

Reject when F is “large”.
Note 1: If q=1, F=tsq
Note: if ro was 0, then F=(1/2)(t1sq+t2sq) (the average of both t’s squared).

If H0 holds, than t1 and t2 are standard normal distributions, so that F is distributed chi-squared(2), or F(2, inf.).

If H0 does not hold, then either t1sq. or t2sq. will be large, and we will reject the null.

BUT in general, t1 and t2 ARE correlated. The formula of the F-statistic takes this correlation into account, so that, if H0 holds, F is distributed F(2, inf.) if n is large, whether ro is zero or not.

Under H0, the F-stat is distributed F(2,inf.), if the sample is large. In general, F(q,inf.), where q is the number of restrictions that we’re testing (can be more than 2).

The F(q,inf.) distribution is the same as chi-squared(q)/q.

The critical value et 5% depends on q. If q=2, the critical value is 3. We can also calculate the p-value.

Steps for a joint hypothesis test:

1. Null and alternative hypotheses.

2. Calculate the F-statistic (Stata), F=10

3. Calculate the p-value: p = Pr[F(2, inf.)>F(act)] = Pr [F(2, inf.)>10]

P=0.0003, i.e., it’s unlikely to get such high t’s (such large bhat’s) if H0 was true. We reject H0 (both b1 and b2 are 0) with 95% confidence.

The F-statistic is simplified if errors are homoscedastic, but we always prefer to allow for heteroscedasticity. Always use the F-statistic that is robust to heteroscedasticity.

7. Model specification

How do we know which variables we should include in a multiple regression model?
To start with, we have our main explanatory variable of interest, our “treatment variable”. Then, we have to think about the potential sources of omitted variable bias.

The goal is to obtain an unbiased estimate of the causal effect of interest (1).

Once we’ve identified the potential omitted variables, we should include them!

If we’re not sure about one, we can try including it, and see what happens. If their coefficient is significantly different from 0 and its inclusion affects b1, then we should include it. Otherwise, we drop it.

Example: we add sex to the wage regression with education, see slides.

Ok, we have our regression results and our estimate for 1. Now, the next step is to think hard about whether we really believe that 1hat captures the “effect” of x on y.
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