
Probability and Stochastic Processes Dr M. DRAIEF

Chapter 2 Markov Chains

1 Introduction

The importance of Markov chains comes from the fact that it has a wide range of applications in physics,
biology, economics and social sciences, and that there is a well-established theory that allows us to perform
computations. Let us first examine an example before giving a formal definition of Markov chains.

Gambler’s fortune Starting with a fortune k a gambler is determined to earn an extra (n − k) playing
the following game repeatedly: He tosses a coin and if it shows heads he wins 1 and he loses 1 if it is tails.
The gambler can either manage to reach his objective of reaching n or lose everything. We are interested in
the probability of either events happening. A convenient way of modelling the problems is as follows.

Let Xi be 1 with probability p and −1 with probability 1−p starting from of fortune k the amount of money
(positive or negative) that the gambler’s has after playing the game for n rounds is given by

Sn = k +X1 + · · ·+Xn .

Note that his fortune (or debt) at time n + 1 depends on his fortune Sn at time n that includes all the
information necessary about his past performance. Indeed

P (Sn+1 = i+ 1 | Sn = i, Sn−1 = in−1, . . . , S0 = k) = p = P(Sn+1 = i+ 1 | Sn = i) .

The process (Sn)n≥0 is said to follow the Markov property. The process (Sn)n≥0 is a Markov chain.

2 Markov property

Markov chains enable us to define a general framework to describe such dynamics. Let {X0, X1, . . . } be a
sequence of discrete-random variables taking values in S, the state space.

Definition 1 The process (sequence) X = {X0, X1, . . . } is a Markov chain if it satisfies

P(Xn = s | X0 = x0, X1 = x1, . . . , Xn−1 = xn−1) = P(Xn = s | Xn−1 = xn−1) ,

for all n ≥ 1 and s, x0, . . . , xn−1 ∈ S.

It is said to be homogeneous if

P(Xn = j | Xn−1 = i) = P(X1 = j | X0 = i) .

In this case we define the transition matrix P = (pij)i,j the matrix of transition probabilities

pij = P(Xn = j | Xn−1 = i) = P(X1 = j | X0 = i) .

The definition of a Markov chains can be restated as follows: given the current state Xn any other information
about the past is irrelevant for predicting the future state Xn+1 as it is already contained in Xn.

In the remainder of the chapter we will focus our attention on homogeneous Markov chains.

Example 1 Gambler’s ruin or random walk. Sn is a Markov chain with transition matrix

pij =


p, if j = i+ 1,

1− p, if j = i− 1,

0, otherwise
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Example 2 Wright-Fisher model.

We consider a fixed population of N individuals each having one copy of one of two types (alleles): A or a.
As a first simplification let us assume that at time n+ 1 the model of the population is obtained by drawing
with replacement from the population at time n. Let Xn be the number of A alleles at time n, then Xn is a
Markov chain with transition probability

pij =

(
N

j

)(
i

N

)j (
1− i

N

)N−j
.

To make the model more interesting we can add mutations, that is to say an A drawn from the n-th generation
ends being an a in the next generation with probability u while the probability is v if the mutation is from a
to A. Hence, using Bayes’ rule, the probability that an A is produced by a given draw is

ρi =
i

N
(1− u) +

N − i
N

v ,

and the transition still has the binomial form

pij =

(
N

j

)
(ρi)

j (1− ρi)N−j .

Example 3 Ehrenfest chain.

Consider two cubical volumes of air connected by a small hole. We can picture this as two urns and N balls.
We pick one ball at random from one urn and move it to the other urn. If Xn is the number of balls in first
urn after the n-th draw it is clear that it forms a Markov chain with transition probability

pi(i+1) =
N − i
N

, pi(i−1) =
i

N
.

For N = 3 the transition matrix is given by
0 1 0 0

1/3 0 2/3 0
0 2/3 0 1/3
0 0 1 0

 .

Proposition 1 The transition matrix is a stochastic matrix, i.e.,

1. pij ≥ 0, for all i, j

2.
∑
j pij = 1, for all i.

Example 4 Social mobility. Let Xn be a family’s social class in the nth generation, which is assumed to be
either lower, middle or upper. A simple version of social mobility we assume that changes of social status is
described by the following transition matrix 0.7 0.2 0.1

0.3 0.5 0.2
0.2 0.4 0.4

 .

Suppose that a family starts in the middle class in generation 0. what is the probability that the generation
one rises to the upper class and generation two falls to the lower class? What is the probability that it will
be in the lower class at generation 2?
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Define the n-step transition matrix P (n) = (pij(n))ij

pij(n) = P(Xn+m = j | Xm = i) = P(Xn = j | X0 = i) .

Example 5 Bernoulli process. Let S = {0, 1, 2, . . . } and define the Markov chain Y by Y0 = 0 and

P(Yn+1 = s+ 1 | Yn = s) = p, P(Yn+1 = s | Yn = s) = 1− p

for p ∈ (0, 1). you may think of Yn as the number of heads thrown in n tosses of a biased coin. It is easy to
see that

P(Yn+m = j | Ym = i) =

(
n

j − i

)
pj−i(1− p)n−j+i, 0 ≤ j − i ≤ n .

The transition matrix P of the Markov chain X and the probability function of the initial condition µ0

entirely determine the Markov chain.

Theorem 1 (Chapman-Kolmogorov) For all i, j ∈ S and all integers m,n

pij(m+ n) =
∑
k∈S

pik(n)pkj(m)

i.e, for P (n) = (pij(n))i,j∈S we have

P (n+m) = P (n) P (m), P (n) = Pn .

Example 6 The weather chain. Let Xn be the weather on day n in London, which we assume either rainy
or sunny. We can propose a very simple model of weather change with transition matrix

Let P =

(
1− α α
β 1− β

)
.

Example 7 Virus mutation. Suppose that a virus can exist in N different strains and each generation either
stays the same, or with probability α mutates to another strain, chosen at random. What is the probability
that the strain in the nth generation is the same as the initial strain?

Example 8 Linear algebra. Let P =

 0 1 0
0 1/2 1/2

1/2 0 1/2

 . What is the probability of returning to 1 after

n steps?

To completely determine the evolution of the Markov chain, i.e. to give the distribution of Xn for any instant
n, we also need to specify the initial condition or state from which the chain is started at time 0. In general
we need to know the probability distribution P(Xn = i0), i0 ∈ S, given µ0 and P . By Chapman-Komogorov

P(Xn = j) =
∑
i0∈S

pi0j(n)µ0(i0)

=
∑
i0∈S
· · ·

∑
in−1∈S

P(X0 = i0, . . . , Xn−1 = in−1, Xn = j)

=
∑
i0∈S
· · ·

∑
in−1∈S

µ0(i0)pi0,i1 . . . pin−1,j

= (µ0P
n)j ,

where µ0 = (µ0(i))i∈S .
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Example 9 The weather chain with transition matrix P =

(
1− α α
β 1− β

)
has different asymptotic

behaviours depending on the choice of the parameters α and β. In fact,

• for α + β ∈ (0, 2), Pn converges to P∞ =

(
β

α+β
α

α+β
β

α+β
α

α+β

)
, i.e. the probabilities of being in state 1

and state 2, in the long run, are given by is P(X∞ = 1) = β
α+β and P(X∞ = 2) = α

α+β respectively,
regardless of the initial condition.

• For α = β = 1, a rather different picture emerges as P 2n =

(
1 0
0 1

)
and P 2n+1 = P =

(
0 1
1 0

)
.

Unless µ0 = (1/2, 1/2), there is no convergence. This is property is due to the periodicity of the chain.

• For α = β = 0, Pn = P =

(
1 0
0 1

)
and the chain stays in its initial state which completely

determines its future behaviour.

In fact the convergence of the sequence Pn to some limit P∞ when n goes to ∞ does not necessarily imply
that the sequence Xn converges to a distribution that is independent of the initial condition.

To illustrate this let us return to the asymptotic behaviour of Markov chains. Given P and µ0 we are
interested in the asymptotic µ∞ of the variable X∞ which is given by µ0P∞ where P∞ is the limit of Pn
when n goes to infinity. We start with an example.

Example 10 We consider the gambler’s ruin problem with f N = 4 and playing with a fair coin.

P =


1 0 0 0 0

1/2 0 1/2 0 0
0 1/2 0 1/2 0
0 0 1/2 0 1/2
0 0 0 0 1

 .

We can easily check that, as n goes to infinity, that Pn → P∞ =


1 0 0 0 0

3/4 0 0 0 1/4
1/2 0 0 0 1/2
1/4 0 0 0 3/4
0 0 0 0 1

 .

In particular if the initial condition is µ0 = [µ0(0), µ0(1), µ0(2), µ0(3), µ0(4)] then

µ∞ = µ0P∞ = [µ0(0) +
3

4
µ0(1) +

1

2
µ0(2) +

1

4
µ0(3), 0, 0, 0,

1

4
µ0(1) +

1

2
µ0(2) +

3

4
µ0(3) + µ0(4)] .

3 Hitting times and absorption probabilities

We consider the random variable TA corresponding to the time it takes the frog to enter a subset A of the
state space S, i.e.

TA = inf{n ≥ 0, Xn ∈ A}

The probability that starting from i the chain ever hits A is given by

hAi = P(TA <∞ | X0 = i) .

It is referred to as absorption probability in A of the Markov chain starting at i.
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The mean time taken by X to reach A is given by

HA
i = E

(
TA | X0 = i

)
.

The quantities HA
i and hAi can be calculated using the transition matrix P .

Example 11 Let P =


1 0 0 0
0 1/2 1/2 0
0 0 1/2 1/2
0 0 0 1

. Starting from state 2, what is the probability of absorption

in 4? Howe long it takes until the chain is absorbed in 1 or 4?

Theorem 2 The vector of absorption probabilities hA = (hAi , i ∈ S) is the (non-negative minimal) solution
of {

hAi = 1, if i ∈ A,
hAi =

∑
j∈S pijh

A
j , if i /∈ A.

The vector of hitting times HA = (HA
i , i ∈ S) is the (non-negative minimal) solution of{
HA
i = 0, if i ∈ A,

HA
i = 1 +

∑
j /∈A pijH

A
j , if i /∈ A.

Example 12 Gambler’s ruin revisited. A gambler has 2 pounds and needs to increase it to 10 pounds in
a hurry. He can play a game with the following rules: a fair coin is tossed ; if the player bets on the side
which actually turns up, he wins a sum equal to his stake and his stake is returned; otherwise he loses his
stake. The gambler decides to use a strategy in which he stakes all his money if he has 5 pounds or less and
otherwise stakes just enough to increase his capital, if he wins, to 10 pounds. Prove that the gambler will
achieve his goal with probability 1/5 and that the expected number of tosses before he either achieves his aim
or loses his capital is 2?

4 Communicating classes

Definition 2 We say that state j is accessible from i or i leads to j, if the chain, started in i, ever visits
state j, with positive probability, i.e. if we have

Pi(Xn = j) = P(Xn = j | X0 = i) = pij(n) > 0

for some n ≥ 0.

We can see this in the graphical representation as the existence of a path i0 = i, i1 ∈ S, . . . in−1 ∈ S, in = j
such that pi0i1 . . . pin−1in > 0.

We say that the states i and j communicate if i is accessible from j and j is accessible from state i.

Let us now consider the relation communicates with i ↔ j as a relation between states. It is not difficult
to see that if i ↔ j and j ↔ k and that i ↔ i so that the relation ↔ is an equivalence relation on S
which is, by the properties of equivalence relations, partitioned into equivalence classes which we refer to as
communicating classes.

we explore the properties of the different states a chain can visit: certain states can be visited an infinite
number of times these are known as recurrent (or persistent) others can only be visited finite number of
times they are called transient. More precisely

Definition 3 Given a Markov chain (Xn)n on the state space S and i ∈ S
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• i is recurrent if Pi(Xn = i for infinitely many n) = 1, alternatively∑
n≥0

pii(n) =∞ .

• i is transient if Pi(Xn = i for infinitely many n) < 1, alternatively∑
n≥0

pii(n) <∞ .

Assume that we have states i and j such that i→ j and j 9 i. Then rij the probability of reaching j from
i is strictly greater than 0. Letting ri be the probability of returning to i then 1− ri ≥ rij (one way of not
returning to i is to go through j), i.e. ri ≤ 1− rij < 1 which implies that i is transient.

Example 13 For the Markov chain with transition matrix

P =



1/2 0 0 0 1/2 0 0
1/4 1/4 1/4 1/4 0 0 0
0 0 1/2 1/2 0 0 0
0 0 0 0 0 1 0

1/2 0 0 0 1/2 0 0
0 0 0 0 0 1/2 1/2
0 0 0 1 0 0 0


.

Here 2→ 1 and 1 9 2 so 2 is transient; 3→ 4 and 4 9 3 so 3 is transient. The sets {1, 5} and {4, 6, 7} are
the remaining communicating classes

Definition 4 A communicating class C ⊂ S is said to be closed if for all i ∈ C and j /∈ C pij = 0.
Alternatively, for i ∈ C and j ∈ S such that i→ j then j ∈ C.

A set B is said to be irreducible if i, j ∈ B, we have i↔ j.

In the previous example {1, 5} and {4, 6, 7} are closed as well as {1, 4, 5, 6, 7} and {1, 2, 3, 4, 5, 6, 7}. However,
only {1}, {2}, {3}, {5}, {6}, {1, 5}, {4, 6, 7} are irreducible.

For closeness {1, 4, 5, 6, 7} and {1, 2, 3, 4, 5, 6, 7} are not of great interest as are {1}, {2}, {3}, {5}, {6} for
irreducibility.

Proposition 2 All the elements of a closed irreducible set are recurrent.

The only such ensembles are {1, 5} and {4, 6, 7}, so that the states 1, 4, 5, 6, 7 are recurrent.

Example 14 Ehrenfest chain.

Consider two cubical volumes of air connected by a small hole. We can picture this as two urns and N balls.
We pick one ball at random from one urn and move it to the other urn. If Xn is the number of balls in first
urn after the n-th draw it is clear that it forms a Markov chain with transition probability

pi(i+1) =
N − i
N

, pi(i−1) =
i

N
.

For N = 3 the transition matrix is given by
0 1 0 0

1/3 0 2/3 0
0 2/3 0 1/3
0 0 1 0

 .
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It is not difficult to check that we have, when n goes to infinity,

P 2n →


1/4 0 3/4 0
0 3/4 0 1/4

1/4 0 3/4 0
0 3/4 0 1/4

 P 2n+1 →


0 3/4 0 1/4

1/4 0 3/4 0
0 3/4 0 1/4

1/4 0 3/4 0

 .

This is not very surprising as the number of balls in one the urns changes from an even to an odd number
and vice-versa at each step. Since the distribution of the states of the chain does not converge to a given
distribution except for some particular initial conditions.

Definition 5 We say that A state j of a Markov chain (Xt)t is periodic is there exists am integer ∆ such
that

P(Xt+s = j | Xt = j) = 0

unless s is divisible by ∆. The chain is periodic if all its states are periodic and is aperiodic if non of its
states is periodic.

As a matter of example, for α, β ∈ (0, 1) the weather chain is aperiodic. For the gambler’s ruin, the two
extreme states are aperiodic, and all other states have period 2. For the Ehrenfest model all the states have
period 2.

We now introduce an important class of Markov chains

Definition 6 (Ergodic Chains) A finite state space, irreducible and aperiodic Markov chain is an ergodic
chain.

Remark 1 If we do not assume that the chain has a finite state space, we will need to introduce the notions
of positive recurrent chain: a state i is said to be positive recurrent if stating from i the average return time
of the chain to i is finite otherwise its called null recurrent. For finite chain, it is not difficult to see that
any recurrent state is positive recurrent.

5 Stationary distribution

So far we looked at the long-run (asymptotic) behaviour of Markov chains by looking at hitting times and
computing absorption probabilities In this section we are interested in the behaviour of the Markov chain
after a large number of steps. In many random phenomena, although it is unlikely that the random system we
are interested is going to settle in a particular state and not budge, under some conditions the distribution
of Xn stops evolving. It reaches stationarity or equilibrium. Ergodic Markov chains have this desirable
property.

Let us suppose the the initial state is random, i.e. we let µi(0) = P(X0 = i), and µi(n) = P(Xn = i). The
vector µ(n) = (µi(n), i ∈ S) satisfies

µ(n) = µ(0)P (n), µ(m+ n) = µ(m)P (n) .

Repeatedly applying Bayes’ formula we get

P(X0 = x0, X1 = i1, . . . , Xn = in) = µ0(i0)pi0i1 . . . pin−1in .

Definition 7 The vector π is called a stationary or invariant distribution of the the chain X if π = (πi, i ∈ S)
is such that

• πi ≥ 0 for all i and
∑
i πi = 1
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• πP = π, i.e., πj =
∑
i πipij

In other words, if π is the stationary distribution then starting from an initial condition distributed according
to π then this is going to be the distribution at all subsequent times.

Example 15 Consider the chain with transition matrix P =

 0 1 0
0 1/2 1/2

1/2 0 1/2

. solving πP = π with

π1 + π2 + π3 = 1 we have π = (1/5, 2/5, 2/5).

The next result explains the idea of equilibrium.

Theorem 3 If the state space S is finite, such that

lim
n
pij(n) = πj

then, (πj)j∈S is a probability distribution then it is an invariant distribution. Moreover

πj =
1

hj,j

where hj,j the expected number of steps to return to j when starting in j.

Remark 2 It is not always the case that such limits exists as in the case where P =

(
0 1
1 0

)
.

In example 8, we showed that for the chain in example 15 satisfies

p11(n) = a+

(
1

2

)n
(b cos(nπ/2) + c sin(nπ/2)) .

Hence using the above theorem and the derivation of the stationary distribution, we have a = 1/5, instead
of working it out from p11(2) as we previously did.

Example 16 The weather chain. Transition matrix P =

(
1− α α
β 1− β

)
. It is not difficult to see that

π =
(

β
α+β ,

α
α+β

)
. Moreover, for i = 1, 2∣∣∣∣pi1(n)− β

α+ β

∣∣∣∣ ≤ |1− α− β|n .
Theorem 4 Let (Xn)n≥0 be an ergodic Markov chain with transition matrix P then the chain has a unique
stationary distribution pi and

lim
n
pij(n) = πj .

Example 17 (Simple queue) A queue is a line where customer wait for service as follows: at each time
step, exactly one of the following events occurs

• If the queue has fewer than N > 0, a new customer arrives with probability λ

• If the queue is not empty a customer departures with probability µ

• the queue is unchanged with the remaining probability
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6 Random walks on graphs

We denote by G = (V,E) a graph with vertices (or nodes) in V and edges in E where the set of edges (or
links) is in V × V such that (i, j) ∈ E means that nodes i and j are connected.

Remark 3 In what follows we focus on undirected1 connected2, non-bipartite3 and simple4 graphs.

For each node i ∈ V we say that j is a neighbour of i if (i, j) ∈ E and we denote by di the number of
neighbours of node i, a.k.a. the degree of node i.

A (simple) random walk on the graph G is the Mrkov chain (Xn)n≥0 with state space V and transition
matrix pij = 1

di
if j is a neighbour of i that we denote by i ∼ j and 0 otherwise. The stationary distribution

of this chain is given by

πi =
di
2m

where 2m =
∑
i∈V di, and m = |E| the number of edges in G. Let hu,v be the average number f steps for

the walk to reach v from u. By theorem 3

hu,u =
1

πu
=

2m

du
.

As when deriving the absorption time, it is not difficult to show that

2m

du
= hu,u =

∑
w∼u

1

du
(1 + hw,u)

which implies that for v a neighbour of u we have

hv,u <
∑
w∼u

(1 + hw,u) = 2m . (1)

Definition 8 We denote by Ci(G) the times it takes the walk, stated in i to visit all the nodes in V at least
once. the cover time of the graph G is given by

C(G) = max
i∈V

Ci(G) .

We have already come across the notion of cover time when dealing with the coupon collector problem. In
fact the duration of the coupon collection is equivalent to the cover time of the complete graph, the graph
where all pairs of nodes are connected. In particular the cover time of the complete graph with N nodes is
given by C(KN ) ≈ N logN for N large.

Lemma 1
C(G) < 4|V ||E| = 4mN < 2N3 .

Proof We start from a given node v0 in V and construct a spanning tree by means of breadth first
exploration of the graph5. The spanning tree constructed will have N − 1 edges6. We now perform a tour of
the nodes of the tree visiting each edge of the tree at most once, which can be done by means of depth first

1If (i, j) ∈ E then so is (j, i).
2there is a path using edges of the graph between any pair of nodes i and j.
3A graph is bipartite if there two disjoint subsets of V V1 and V2 such that V1 ∪ V2 = V and E ∈ (V1 × V2) ∪ (V2 × V1), i.e.

edges are always between nodes in V1 and nodes in V2
4The is a unique edge between any pair of connected nodes and there are no links between a node and itself.
5We include all the neighbours of v0 as its children in the tree and then we go through each of the neighbours of v0 and

explore their neighbours until we have explored all the nodes in the graph which is bound to happen as the graph is connected.
6There are always N − 1 edges in a tree with N nodes.
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exploration of the tree. Let us denote v0, v1, . . . , v2n−2 the sequence of nodes visited, there are obviously
repetitions in this sequence. Now it is clear that it takes longer to make the tour than to cover the graph.
Hence

C(G) ≤
2N−3∑
i=0

hvi,vi+1
.

By lemma 1 we have that
C(G) ≤ 2(N − 1)2m < 4mN .

Note thatm ≤ N(N−1)
2 which yields the bound C(G) < 2N3. QED

Now we are going to apply the above result to the s− t connectivity problem. The aim is to decide whether
there exists a path in the graph between two nodes s and t. This can be done using standard breadth-first
or depth first search7. Here we instead use our previous analysis of the cover time to devise a randomised
algorithm to solve the s-t connectivity problem.

Pseudocode: s− t connectivity algorithm

1. Start a random walk from s

2. If the walk reaches t within 4N3 steps, return that there is path.

3. Else, return that there is no path.

Theorem 5 The above algorithm returns the correct answer with probability 1/2, and it only errs when
returning that there is no path from s to t when there is one.

Proof If there is no path then the algorithm always returns the correct answer. If there is path, then it is
possible that the walk does no visit n in the first 4N3 steps. The expected time to reach s from t, if a path ex-
ists, is bounded above by the cover time, which is at most 2N3. By Markov’s inequality, the probability that
the walk takes more than 4N3 steps to reach t from s is at most 1/2. We can make the error smaller by repeat-
ing the algorithms QED

7 Continuous-time Markov chains

In this section we define the equivalent of Markov chains described so far when time is continuous rather
then being discrete. We consider families of random variable Xt where t ≥ 0.

The introduction of continuous Markov is a bit more intricate the in discrete time. However once the theory
is set up many of the results for discrete time Markov chain can be easily stated in the continuous tine
setting. Let us start with some terminology illustrated through an example.

For S a countable (state) space we say that a matrix Q is a rate matrix if

(i) 0 ≤ −qii <∞, for all i,

(ii) qij ≥ 0, for i 6= j,

(iii)
∑
j∈S qij = 0, for all i.

For convenience we denote qi =
∑
j 6=i qij = −qii. As we will see this corresponds to the transition matrix of

a continuous-time Markov chain. Indeed, let Q =

 −2 1 1
1 −1 0
2 1 −3

 corresponds to the following dynamic:

7The use of each of these standard technique requires Ω(N) space where as our algorithm only requires O(logn) bits. Such
analysis is beyond the scope of this course.
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In state 3 you take two independent exponential timers T1 ∼ Exp(2) and T2 ∼ Exp(1); if T1 is smaller the
chain jumps to 1, otherwise it jumps to 2.

Let us define P (t) =
∑∞
k=0

tk

k!Q
k = etQ. Note that P ′(t) = P (t)Q and P ′′(t) = P (t)Q2

We consider the case of a following process on {0, . . . , N} with rate matrix

Q =


−λ λ 0 . . . 0
0 −λ λ . . . 0

0 . . .
. . .

. . . λ
0 . . . 0 −λ λ
0 . . . . . . 0 0

 .

It is not difficult to see that pij(t) = 0 for i > j and that

p′ii(t) = −λpii(t), pii(0) = 1 , i < N

p′ij(t) = −λpij(t) + λpi,j−1(t), pij(0) = 0 , i < j < N

p′iN (t) = λpi,N−1(t), piN (0) = 0 , i < N .

Definition 9 A process X = {Xt, t ≥ 0} is a continuous time Markov chain if

P(Xtn = s | Xt1 = x1, Xt2 = x2, . . . , Xtn−1 = xn−1) = P(Xtn = s | Xtn−1 = xn−1) ,

for all n ≥ 1 and s, x1, . . . , xn−1 ∈ S and t1 < t2 < · · · < tn.

We define the transition matrix P (s, t) = (pij(s, t))i,j the matrix of transition probabilities

pij(s, t) = P(Xt = j | Xs = i) .

The chain is called homogeneous if pij(s, t) = pij(0, t− s). In this case we focus on P (t) = P (0, t).

Example 18 In the previous example with Q =

 −2 1 1
1 −1 0
2 1 −3

, one can show that

p11(t) =
3

8
+

1

4
e−2t +

3

8
e−4t .

In the remainder of this section we focus our attention on homogeneous chains. Similar to discrete-time
Markov chains we have, for s ≤ u ≤ t,

pij(s, t) =
∑
k

pij(s, u)pij(u, t)

More generally we have the Chapman-Kolmogorov equation

P (s+ t) = e(s+t)Q = esQetQ = P (s)P (t), s ≤ u ≤ t .

In fact, for a small time dt we can consider

P (t+ dt)− P (t)

dt
= P (t)

P (dt)− I
dt

,

where I is the identity matrix. When dt→ 0, letting Q = limdt→0

(
P (dt)−I

dt

)
we have

dP (t)

dt
= P (t)Q ,
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the matrix Q is known as the transition rate or generator and

qii = lim
dt→0

pii(t, t+ dt)− 1

dt
, qij = lim

dt→0

pij(t, t+ dt)

dt
, i 6= j .

It is not difficult to see that
∑
j∈S qij = 0. Moreover we have that from dP (t)

dt = P (t)Q, the forward equation
given by

p′ij(t) =
∑
k∈S

pik(t)qkj

and from dP (t)
dt = QP (t) the backward equation given by

p′ij(t) =
∑
k∈S

qikpkj(t)

Alternatively, since P (0) = I, we have

P (t) = etQ = I + tQ+
t2

2!
Q2 + · · · =

∞∑
k=0

tk

k!
Qk .

8 Poisson process

The first important process we are interested in is the Poisson process on the integers with transition rate

Q =


−λ λ 0 . . . 0

0
. . .

. . .
. . . 0

0 . . . −λ λ . . .

0 . . . 0
. . .

. . .

 .

Using the ideas from the introduction with N going to infinity, we have that pij(t) = e−λt (λt)j−i

(j−i)! for i ≤ j

and pij(t) = 0 if j < i.

Theorem 6 First, s > 0, Nt+s −Nt independent of Nu for all u ≤ t.
If N0 = 0 then Nt has the Poisson distribution with parameter λt.

Let T1, T2, . . . the instants where the Process N is incremented by 1 and let Xi = Ti+1 − Ti, i ≥ 0 with
T0 = 0.

The sequence Xi is i.i.d. with common distribution exponential with parameter λ and the Tn is distributed
according to a Gamma distributions with parameters (n, λ), i.e.

fTn
(t) =

(λt)n−1

(n− 1)!
λe−λt, t ≥ 0 .

9 Jump Markov chains

Given a continuous-time Markov chain with rate matrix Q we can define a discrete-time Markov chain known
as the jump chain with transition matrix P with

pij =

{
qij
qi
, if j 6= i, qi 6= 0,

0, if j 6= i, qi = 0,
pii =

{
0, if qi 6= 0,

1, if qi = 0,

In fact the chain stays in state i for an exponential distribution of parameter qi > 0 and then jumps to other
states according to the transition matrix P . If qi = 0 then once the chain reaches i is stays there forever.
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Example 19 In the previous example with Q =

 −2 1 1
1 −1 0
2 1 −3

, we have P =

 0 1/2 1/2
1 0 0

2/3 1/3 0


As a consequence of this, assuming that qi > 0 for all i ∈ S and letting hAi be the hitting probability of
A ⊂ S starting in state i and HA

i the corresponding mean hitting time then

Theorem 7 We have
hAi = 1, i ∈ A;

∑
j

qijh
A
j = 0, i /∈ A

and
HA
i = 0, i ∈ A; 1 +

∑
j /∈A

qijH
A
j = 0, i /∈ A

10 Stationary distribution

The previous analogy enables us to generalise all the notions related to discrete-time Markov chain to the
continuous-time ones. In particular we can define the stationary distribution of the Markov chain as follows

Definition 10 The vector π = (π0, π1, π2, . . . ) is a stationary distribution of the chain if πi ≥ 0,
∑
i πi = 1

and
π = πP (t) .

The last property is equivalent to
πQ = 0 .

Theorem 8 If the Markov has a stationary distribution π then

lim
tø∞

pij(t) = πj

We are going to focus our attention on a family of continuous-time Markov chains known as birth and death
processes

Definition 11 A birth and death process is a continuous-time Markov process taking values in {0, 1, 2, . . . }
with transition probabilities

P (X(t+ h) = m+ n | X(t) = n) =


λnh, if m = 1,

µnh, if m = −1,

0, otherwise

Its generator is then given by

Q =


−λ0 λ0 0 0 0 . . .
µ1 −(λ1 + µ1) λ1 0 0 . . .
0 µ2 −(λ2 + µ2) λ2 0 . . .
0 0 µ3 −(λ3 + µ3) λ3 . . .
...

...
. . .

. . .
. . .

. . .

 .

The birth rates are given by λ0, λ1, . . . and the death rates are µ0, µ1, . . .

Remark 4 The Poisson process is a special case of birth and death process where µ1 = µ2 = · · · = 0 and
λ0 = λ1 = · · · = λ the rate of the Poisson process.
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If
∑∞
n=1

λ0λ1...λn−1

µ1µ2...µn
<∞, then the stationary distribution of a birth and death process is given by

πn =
λ0λ1 . . . λn−1

µ1 . . . µn
π0, n ≥ 1

where

π0 =

(
1 +

∞∑
n=1

λ0λ1 . . . λn−1

µ1 . . . µn

)−1

.

Letting λn = λ and µn = nµ we have

lim
k→∞

P(X(t) = k) =
ρn

n!
e−ρ

The stationary distribution of X(t) is a Poisson distribution with parameter ρ = λ
µ .
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11 Exercises

Exercise 1 Consider two candidates in an election in which candidate A gets a votes while candidate B
gets b votes (b < a). Votes are counted in random order chosen uniformly at random over the permutation
on the a + b votes. Let n = a + b, Sk=number of votes by which candidate A is ahead after counting the
first k votes (Sk can be negative), Sn = a− b, and Xk = Sn−k

n−k , k = 0, ..., n− 1.

1. Derive the number of votes for candidates A and B after counting n− k+ 1 votes in terms of Sn−k+1.

2. Show that E(Sn−1|Sn−k+1) = Sn−k+1(n−k)
n−k+1 .

3. Show that E(Xk|X0, ..., Xk−1) = Xk−1.

4. Let T = inf {k ≥ 0|Xk = 0} if such T exists and T = n− 1 otherwise.

(a) Show that E(Xk) = E(X0),∀k < n

(b) Show that E(XT ) = a−b
a+b .

5. (a) Assume that A leads throughout the count (i.e. T = n− 1). Show that XT = Xn−1 = S1 = 1.

(b) Assume that A does not lead throughout the count, i.e. ∃k < n − 1, Xk = 0. Explain why
T = k < n− 1 and XT = 0.

(c) Let E1 denote the probability of the event in 5a. Show that

P(E1) =
a− b
a+ b

Exercise 2 Assume that random variables U and V are chosen independently and uniformly out of the
set {1,2,3,4,5}. From this, we derive random variables X =min(U, V ) and Y =max(U, V ).

1. Determine the joint law of (U, V ).

2. Determine E[U |Y = n], for n ∈ {1, 2, 3, 4, 5}.

3. Derive E[U |Y ].

4. Derive E[Y |U ].

5. Derive also E[U |X] and E[X|U ].

Exercise 3 We consider two random variables X and Y such that the joint distribution of the random
vector (X,Y ) is given by, for 1 ≤ j ≤ i ≤ 5,

pij = P(X = i, Y = j) =
1

15

1. (a) Show that (pij)i,j∈{1,...,5} is a probability distribution.

(b) Compute the marginal distributions of X and Y .

(c) For 1 ≤ j ≤ i ≤ 5, compute the conditional distribution.

P(X = i|Y = j)

2. (a) Compute E(X|Y = j), j = 1, ..., 5. Show that E(X|Y ) = Y+5
2 .

(b) Compute E(Y |X = i), i = 1, ..., 5, and E(Y |X).
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(c) Using the previous two questions show that

E(X) =
1

2
E(Y ) +

5

2

E(Y ) =
1

2
E(X) +

1

2

(d) Using the previous question, compute E(X) and E(Y ).

3. By analogy to the arguement above, derive E(X) and E(Y ) for X and Y having joint distribution

P(X = i, Y = j) =
2

n(n+ 1)

where n is a positive integer and 1 ≤ j ≤ i ≤ n.

Exercise 4 Let X be a Markov chain. Which of the following are Markov chains?

1. (Xm+r, r ≥ 0).

2. (X2m,m ≥ 0).

3. The sequences of pairs ((Xn, Xn+1), n ≥ 0).

Exercise 5 A die is rolled repeatedly. Which of the following are Markov chains? For those that are,
supply the transition matrix.

1. The largest number Xn shown up to the nth roll.

2. The number Nn of sixes in n rolls.

3. At time r, the time Cr since the most recent six.

4. At time r, the time Br until the next six.

Exercise 6 Let X be a Markov chain and let nr : r ≥ 0 be an unbounded increasing sequence of positive
integers. Show that Yr = Xnr

constitutes a (possibly inhomogeneous) Markov chain. Find the transition
matrix of Y when nr = 2r and X is simple random walk.

Exercise 7 Virus mutation. Suppose that a virus can exist in N different strains and each genereation
either stays the same, or with probability α mutates to another strain, chosen at random. What is the
probability that the strain in the nth generation is the same as the initial strain?

Exercise 8 Markov’s other chain. Let Y1, Y3, Y5, . . . a sequence of iid r.v. such that, for k = 0, 1, . . .

P(Y2k+1 = −1) = P(Y2k+1 = +1) = 1/2 .

Let Y2k = Y2k−1Y2k+1, for k = 1, 2 . . . . It is not difficult to see that Y2, Y4, . . . is a sequence of iid r.v. with
the same distribution as Y1, Y3, Y5, . . . .

Is Y1, Y2, Y3, . . . a Markov chain?
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Exercise 9 A faulty digital video confrencing system shows a clustered error pattern. If a bit is received
correctly, then the chance to receive the next bit correctly is 0.999. If a bit is received incorrectly, then the
next bit is incorrect with probability 0.95.

1. Model the error pattern of this system using the discrete time Markov chain.

2. How many communicating classes does the Markov chain have? Is it irreducible?

3. In the long run, what is the fraction of correctly received bits and the fraction of incorrectly received
bits?

4. After the system is repaired , it works properly for 99.9% of the time. A test sequence after repair
shows that, when always starting with a correctly received bit, the next 10 bits are correctly received
with probability 0.9999. What is the probability now that a correctly (and analogously incorrectly)
received bit is followed by another correct (incorrect) bit?

Exercise 10 We consider (Xn)n be a Markov chain over {1, . . . , N} whose transition matrix is partitioned
as

P =

(
A B
C D

)
A being a k by k matrix, B a k by N − k matrix, B a N − k by k matrix and D a N − k by N − k matrix,
0 < k < N .

We are interested in the Markov chain (X̃n)n for which only visits to the states 1, . . . , k are recorded. It is
not difficult to show that its transition matrix is

P̃ = A+B
∑
n≥0

DnC = A+B(I −D)−1C .

Now consider the following problem

A businesswoman spends hers time in London between (1) her office in the City, (2) her mansion in West
Hampstead , (3) the Pacha restaurant in Gloucester road , and (4) with her lover. She moves from one to
another according to a transition matrix P , though her husband, who knows nothing of the lover believes
her movements are governed by the transition matrix PW :

P =


1/3 1/3 1/3 0
0 1/3 1/3 1/3

1/3 0 1/3 1/3
1/3 1/3 0 1/3

 , PW =

 1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3


1. The public only sees the businesswoman when she is in (1), (2) or (3); calculate the transition matrix
P̃ which they believe controls her movements.

2. Each time she moves to a new location (except when she meets her lover), she phones her husband.
Write down the transition matrix that governs the sequence of locations from which she phones, and
calculate its invariant distribution.

3. The husband notes her calls and becomes suspicious as she is not enough at home. Justify the husband’s
suspicion.

4. Confronted the businesswoman swears hers fidelity and resolves to choose a new transition matrix

17 of 19



Probability and Stochastic Processes
Dr M. DRAIEF

Chapter 2 Markov Chains

P ∗ =


1/4 1/4 1/2 0
1/2 1/4 1/4 0
0 3/8 1/8 1/2

1/5 1/10 1/10 3/5


Will this deal with the husband’s suspicions? Explain your answer.

Exercise 11 Consider a computer that has two identical and independent processors. The time between
failures has an exponential distribution. The mean value of this distribution is 1000 hours. The repair time
for a damaged processor is exponentially distributed as well, with a mean value of 100 hours. We assume
damaged processors can be repaired in parallel. There are clearly three states for this computer: (1) both
processors work, (2) one processor is damaged and (3) both processors are damaged.

1. Make a continuous time Markov chain presentation of these states.

2. What is the generator matrix Q for this Markov chain? Give the relation between the state probability
at time t and its derivative.

Hint: The time between failures has an exponential distribution. This means that the failure rate is
λ = 0.001 per hour. Similarly, the repair rate will be µ = 0.01 per hour.

3. Calculate the steady state (π) of this process. Comment on the availability of the computer if (i) both
processors are required to work, or (ii) at least one processor should work.

Exercise 12

1. Let us assume that (Xt)t≥0 is a given continuous-time Markov chain on the state space S with rate
matrix Q = (qij)i,j∈S . Show that if there exists a probability distribution π = (πi)i∈S such that, for
all i, j ∈ S, we have

πiqij = πjqji ,

then π is the invariant distribution of (Xt)t≥0. The Markov chain is said to be reversible.

Hint: Use the fact that if Q is a rate matrix then
∑
j∈S qij = 0, for all i ∈ S.

2. We consider the dynamics of a Markovian single server queue in continuous time. Customers join the
queue and are served on a first-in-first-out basis, i.e., according to the order in which they join the
queue. We suppose that the time between two successive arrivals is exponentially distributed with
parameter λ > 0 and that each customer requires a service time that is exponentially distributed with
parameter µ > 0.

Let Xt, t ≥ 0, be the random process that describes the number of customers waiting in the queue
including the one being served.

(a) Derive the transition matrix Q of (Xt)t≥0.

(b) Using question 3. a), show that, if ρ = λ
µ < 1, the stationary (invariant) distribution of (Xt)t≥0

is given by
πi = (1− ρ)ρi .

Comment on the stability condition ρ < 1.

(c) Compute the average number of customers in the queue in the stationary regime.

3. Let us now assume that we have a post office with two cashiers. The two queues at the cashiers run
(separately) in parallel. Each of these queues operates following the dynamics in 3) b) with the same
parameters λ and µ.
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(a) Derive the average number of customers in the post office.

(b) A clever employee suggests merging the two queues so that customers arrive at rate 2λ wait until
one of the two cashiers is available and is then served. Describe the underlying continuous-time
Markov chain and discuss its stability.

(c) Using similar arguments as in 3. b), show that the average number of customers in the post office
in stationary regime is given by

2µλ

(µ+ λ)(µ− λ)
.

(d) Is the suggestion of the employee better than running the two queues separately? Justify your
answer.
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