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Chapter 2 Matrix Decomposition

At the end of the last chapter we explored two procedures for solving linear equations, namely Gaussian
elimination and the LU decomposition. Both of these methods transform the original linear system into a
triangular system. The advantage of the LU decomposition is that it needs to be performed once and then
one can plug in the values of y to solve two linear triangular system whereas the Gaussian decomposition
has to be applied from scratch for each value y. The other observation one needs to make is that the LU
decomposition fails if the matrix is singular, whereas the Gaussian elimination might work in this case in
the y of interest is in the range of A. Besides the LU decomposition is meant to deal with square matrices
while we can always perform the Gaussian elimination. In this chapter we will explore two rather important
matrix decompositions that enable us to deal with non-square matrices: The QR decomposition and the
singular value decomposition (SVD).

1 QR decomposition

Before introducing the QR decomposition let us first go back to the linear least-squares problem. We focus
our attention on overdetermined linear equations Ax = y where A ∈ Rm×n, y ∈ Rm with m ≥ n. As
there are more constraints then variables, in general, such equations do not have a solution, so we have to
settle with an approximate solution. The most common such approximation is the one that minimises the
quadratic error

||Ax− y||2 = (Ax− y)T (Ax− y) .

Least-squares problem Let us first consider the existence of such solution. Tot his end we repeat the
argument described in the previous Chapter.

Using the fundamental theorem of linear algebra Ran(A)⊕Ker(AT ) = Rm with Ran(A) ⊥ Ker(AT ) we can
decompose the vector as y = yR + yK where yR ∈ Ran(A), yK ∈ Ker(AT ) and yR ⊥ yK . Let r = y−Ax, we
have

||r||2 = rT r = ||(yR −Ax) + yK ||2 = ||yR −Ax||2 + ||yK ||2

since yR −Ax ⊥ yK .

Therefore minimising ||Ax−y|| reduces to minimising ||yR−Ax||. The optimal solution is the one that makes
||yR −Ax|| = 0 and thus yR = Ax which is possible since yR ∈ Ran(A). Remember that yK ∈ Ker(AT ) and
yk = y − yR = y −Ax. Putting this together we have

AT (y −Ax) = AT yK = 0

implying that ATAx = AT y known as the normal equation.

Proposition 1 If A has zero-null space then the solution of the least square problem

minimise ||Ax− y||2

is unique and given by
x∗ = (ATA)−1AT y

Proof Note that

||Ax− y||2 = ||Ax−Ax∗ +Ax∗ − y||2

= ||Ax−Ax∗||2 + ||Ax∗ − y||2 + 2(Ax−Ax∗)T (Ax∗ − y)

= ||Ax−Ax∗||2 + ||Ax∗ − y||2 ,
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since
(Ax−Ax∗)T (Ax∗ − y) = (x− x∗)T (ATAx∗ −AT y) = 0

Hence ||Ax− y|| > ||Ax∗ − y|| unless ||Ax−Ax∗|| = 0 which implies x = x∗ since A has zero-null space.

QED

The previous proposition enables us to transform the least square problem into solving a linear equation
problem, namely solving the normal equation,

(ATA)x∗ = AT y .

Moreover when A has zero-nullspace, the matrix ATA is invertible. It is square in Rn×n and has zero-null
space. Since if ATAx = 0 then

xTATAx = 0 ⇒ ||Ax||2 = 0 ⇒ Ax = 0 ⇒ x = 0 .

In particular the normal equation admits a unique solution.

Let us further examine the consequences of the above proposition. First, note that

A† = (ATA)−1AT

we have A†A = I. The matrix A† is known as the generalised (left) inverse or pseudoinverse of A (a.k.a.
Moore-Penrose inverse).

In addition the vector Ax∗ is the orthogonal projection of y on the subspace Ran(A). More precisely, let

P = A(ATA)−1AT = A†AT

It is clear that P 2 = P and that PT = P so P is an orthogonal projection. Now let us examine the range
of P .

• We have that Ran(A) ⊂ Ran(P). Indeed, if x ∈ Ran(A) then there exists a z such that Az = x and

Px = A(ATA)−1ATAz = Az = x ,

so that x ∈ Ran(P).

• Conversely, we have Ran(P) ⊂ Ran(A). Since if x ∈ Ran(P) then PX = x and hence

x = A
(
(ATA)−1ATx

)
∈ Ran(A) .

To solve the least square problem one can perform the LU decomposition of ATA and then solve the equation
ATAx = AT y. In fact the matrix ATA is positive definite if A has zero-null space and one can perform the
Cholesky decomposition described in the problem sheet, i.e. write ATA = LTL where L is a lower triangular
matrix in Rn×n. Subsequently, we do the following: (1) compute z = AT y at the cost of 2mn operations, (2)
perform the product ATAat the cost of mn2 operations as it is symmetric, (3) perform Cholesky on ATA
costing 1/3n3 operations, (4) solve Lw = z(= AT y) and then LTx = w each costing n2 operations.

The total cost of the algorithm is mn2 + 1/3n3 + 2mn+ 2n2, roughly

mn2 + 1/3n3 .

Example 1 Solve the least squares for A =


3 −6 26
4 −8 −7
0 4 4
0 −3 −3

 and y =


1
1
1
1

.

Alternatively one could perform another decomposition known as the QR-decomposition of the matrix A,
A = QR where Q ∈ Rm×n and R ∈ Rn×n. The columns of Q form an orthogonal basis of Ran(A). Note
that when m > n then Q is not square. The columns of Q are orthonormal so QTQ = I however QQT 6= I.
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Gram-Schmidt orthogonalisation procedure Let us first describe the Gram-Schmidt algorithm for
computing an orthonormal basis (q1, · · · , qn) of the range of the matrix A ∈ Rm×n.

Let a1, . . . , an ∈ Rm, m ≥ n be the column vectors of A. If A has zero-null space these vectors are linearly
independent vectors (try to prove it). The Gram-Schmidt algorithm constructs an orthonormal basis for
Span(a1, . . . , an) = Ran(A) as follows

q1 =
a1
||a1||

q̂2 = (I − q1qT1 )a2

q2 =
q̂2
||q̂2||

q̂3 = (I − q1qT1 − q2qT2 )a3

q3 =
q̂3
||q̂3||
...

Note that the matrices qjq
T
j defined above are orthogonal projectors and so are the matrices I−q1qT1 −· · · qkqTk .

The latter in the projection onto the orthogonal complement of Span(q1, . . . , qk): at each step, we construct
a new vector qk by projecting ak+1 into the orthogonal complement of the previous basis i.e. q1, . . . , qk and
then normalising. Also note that for each k = 1, . . . , n, we have (check it yourself)

Span(a1, . . . , ak) = Span(q1, . . . , qk) .

We obtain the matrix R as follows. Let A = [a1 . . . an] and Q = [q1 . . . qn], then

rjk =


qTj ak, j < k
||q̂j ||, j = k
0, j > k.

We now describe a recursive procedures for computing such a QR decomposition. The QR decomposition
of a matrix A ∈ Rm×n with a zero nullspace is of the form A = QR where Q ∈ Rm×n is orthogonal and
R ∈ Rn×n upper triangular with positive diagonal entries.

Let A = [a1, A2], Q = [q1, Q2] and R =

(
r11 R12

0 R22

)
where a1, q1 ∈ Rm, A2, Q2 ∈ Rm×(n−1), R12 ∈

R1×(n−1) and R22 ∈ R(n−1)×(n−1).

We want Q to be orthogonal, so that

qT1 q1 = 1, QT2Q2 = I, qT1 Q2 = 0 .

Moreover we want r11 > 0 and R22 upper triangular.

QR factorisation (modified Gram-Schmidt method) Given a A ∈ Rm×n with zero null space

1. r11 = ||a1||

2. q1 = a1
||a1||

3. R12 = qT1 A2

4. Compute QR factorisation of A2 − q1R12 = Q2R22.
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It suffices to show that first A2 − q1R12 has zero null space. Indeed

(A2 − q1R12)x =
(
a1 A2

) ( −1/r11R12x
x

)
= A

(
−1/r11R12x

x

)

It can be shown that the total cost is 2mn2.

Solving Linear equations using QR To solve a set of linear equations Ax = y, when A is nonsingular.
We first compute the QR decomposition of A = QR. note that

Ax = y ⇐⇒ QRx = y ⇐⇒ Rx = QT y

where the final system reduces to solving a linear system with an upper triangular matrix.

Solving least-squares using QR We can solve the least square problem using the QR decomposition.
In fact (ATA) = RTQTQR = RTR and AT y = RTQy and the normal equation above becomes

RTRx∗ = RTQy

In particular if we use the QR decomposition based on the modified Gram-Schmidt procedure we have R is
invertible if A has zero-null space and the solving the normal equation reduces to solving

Rx = QT y

To sum up, given a A ∈ Rm×n with zero null space and a vector y ∈ Rm, the least square solution to Ax = y
can be obtained as follows.

1. Compute QR factorisation A = QR

2. Compute v = QT y

3. Solve Rx = v.

It can be shown that the total cost is 2mn2.

To conclude let us point to the fact that despite being slower than the LU decomposition, the QR decom-
position does not require the computation of the product ATA the result of which, after rounding up the
entries of the matrix, might distort the solution of the problem (see examples in accompanying notes).

2 Singular value decomposition

The singular value decomposition is the most popular among the procedures for matrix decomposition as it
does not require the matrix in question to be either square or zero-nullspace. Given a matrix A ∈ Rm×n the
SVD decomposition of A is given by

A = UΣV T

where U ∈ Rm×m, V ∈ Rn×n orthogonal and Σ ∈ Rm×n is diagonal with diagonal elements σ1 ≥ σ2 ≥ σn ≥ 0
and such that the rank of A is given by the number of σi that are positive (non-equal to zero).

To construct the SVD of a matrix A we proceed in steps. First let us assume that m geqn if not we apply
the following to AT to get the SVD of A by transposing the decomposition of AT .
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Step 1: Eingenvalues and Eingenvectos of ATA The matrix ATA ∈ Rn×n is symmetric so it is
diagonalisable1, i.e. there exist λ1, . . . , λn in R and v1, . . . , vn in Rn such that ATAvi = λivi, without loss
of generality we can choose the vis such that ||vi|| = 1 for all i. First, note that since ATAvi = λivi then

vTi A
TAvi = λiv

T
i vi ⇒ λi = ||Avi||2 .

as ||vi||2 = 1. It is not difficult to see that λi = ||Avi||2 > 0 unless vi ∈ Ker(A). Let us denote σj =
√
λj for

all j.

Moreover if λi 6= λj then
λiv

T
j vi = vTj A

TAvi = vTi A
TAvj = λjv

T
i vj

since xT y = yTx. Subsequently vTj vi = 0 whenever λi 6= λj .

At the end of this step we have constructed an orthogonal basis of Rn corresponding to eigenvectors of ATA.
Note that if there are more than one eigenvector per eigenvalue, that are linearly independent, then we can
use the Gram-Schmidt procedure to transform these vectors into as many orthonormal vectors.

Step 2: Orthonormal family in Rm We will define a family of vectors in Rm as follows.

• if σi 6= 0 let ui = Avi
σi

then

||ui|| =
vTi A

TAvi
σ2
i

= 1 .

• if σi = 0, then the corresponding vi in is Ker(A). Assume that we have already constructed u1, . . . , uj−1
then we choose a unit vector ui, ||ui|| = 1 from (Span(u1, . . . , uj−1))

⊥
. This can be done by taking

a vector not in Span(u1, . . . , uj−1) and apply the orthogonal projection I − u1uT1 − · · · − uj−1uTj−1 to

remove the component in Span(u1, . . . , uj−1) and keep its component in (Span(u1, . . . , uj−1))
⊥

as in
the Gram-Schmidt decomposition. By the above construction if either σj or σk is equal to zero then
uTj uk = 0 for j 6= k. If σj 6= 0 and σk 6= 0 then

uTj uk =
1

σjσk
(Avj)

TAvk =
1

σjσk
vTj (ATAvk) =

λk
σjσk

vTj vk = 0 ,

since vTi vk = 0

In this step we construct an orthonormal family of Rm which is not necessarily a basis as m ≥ n.

Step 3: SVD Note that in step 2 we constructed a family of vectors in Rm such that Avi = σiui. In
matrix form this can be rewritten as

[Av1 Av2 . . . Avn] = [σ1u1 σ2u2 . . . σnun]

or
A[v11 v2 . . . vn] = [u1 u2 . . . un]Σ̃

where Σ̃ is in Rn×n diagonal with diagonal elements σ1, . . . , σn. In particular we have that V = [v1 v2 . . . vn]
is square and orthogonal since its columns form an orthonormal family. This implies that V TV = I = V V T

so that
AV = Ũ Σ̃ ⇒ A = AV V T = Ũ Σ̃V T .

This last decomposition looks very much like the SVD described above except that Σ̃ is in Rn×n and Ũ is
in Rm×n with ŨT Ũ = I since its column vectors form an orthonormal family.

1This is an important property of symmetric matrices that we will not prove here.
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To complete the derivation, we first complete the family u1, . . . , un to construct an orthonormal basis of Rm.
To this end, j = n+1, . . . ,m, we can add to {u1, . . . , uj−1} a vector ujfrom (Span(u1, . . . , uj−1))

⊥
as before.

We finally obtain an orthonormal basis {u1, . . . , um} and we have that U = [u1 u2 . . . um] is an orthogonal
matrix in Rm×m. It remains to define the matrix Σ ∈ Rm×n by adding a block of zeros to the bottom of Σ̃
as follows

Σ =


Σ̃

0 . . . 0
...

. . .
...

0 . . . 0


Theorem 1 Let A ∈ Rm×n (here m can bigger or smaller than n) then there exist matrices U ∈ Rm×m,
V ∈ Rn×n orthogonal and a diagonal matrix Σ ∈ Rm×n with σ1 ≥ σ2 ≥ σr ≥ σr+1 = · · · = σmin(m,n) = 0
such that A = UΣV T and r is the rank of the matrix A, where min(m,n) is the minimum value between n
and m.

In fact, one can easily rewrite A = UΣV T as

A =

min(m,n)∑
i=1

σiuiv
T
i =

r∑
i=1

σiuiv
T
i .

In particular let x ∈ Rn we have

Ax =

r∑
i=1

σi(v
T
i x)ui ,

and Ran(A) = Span{u1, . . . , ur},Ker(AT ) = (Ran(A))
T

= Span{ur+1, . . . , um}, Ran(AT ) = Span{v1, . . . , vr},
and Ker(A) =

(
Ran(AT )

)T
= Span{vr+1, . . . , vn}.

3 Condition number

Now we are going to use the idea of matrix norm to understand the impact of perturbations on the solution
of a linear equation.

We define a matrix norm in terms of a given vector norm, we use the vector norm, denoted by ||x||. Given
a matrix A ∈ Rm×n, we define its norm by

||A|| = max
x 6=0

||Ax||
||x||

.

First note that for two matrices A and B,

||AB|| ≤ ||A|| |||B|| .

and that ||Ax|| ≤ ||A|| ||x||.
If we consider the Euclidean norm for vectors ||x||2 =

∑n
i=1 x

2
i , we have the following norm for matrices

||A|| = σ1 .

where σ1 is the square root of the largest eigenvalue of ATA defined in the SVD decomposition.

Suppose that we want to solve a linear equation Ax = y where A ∈ Rn×n non-singular, i.e. , there is unique
solution x = A−1y. Now suppose that we have a small perturbation of y, we replace y with y + ∆y. The
new solution is x+ ∆x such that

x+ ∆x = A−1(y + ∆y) = A−1y +A−1∆y = x+A−1∆y ,
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so ∆x = A−1∆y. It is not difficult from the definition of the matrix norm

||A|| = max
{x∈Rn, x 6=0}

||Ax||
||x||

to see that
||∆x|| = ||A−1∆y|| ≤ |||A−1||| ||∆y|| .

Hence if ||A−1|| is small, then small changes in y result in small changes in x, and vice versa if ||A−1|| is
large. It is however more interesting to look at the relative error

||∆x||
||x||

≤ ||A|| ||A−1|| ||∆y||
||y||

The parameter κ(A) = ||A||||A−1|| is called the condition number of A. Using the fact that ||AB|| ≤ ||A||||B||
we easily see that

κ(A) = ||A|| ||A−1|| ≥ ||AA−1|| = ||I|| = 1 .

Note that using the SVD decomposition of A we have κ(A) = σ1

σn
.
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4 Exercises

Exercise 1 Express each of the following problems as a set of linear equations.

(a) Let f(t) = c0 + c1t+ c2t
2 + c3t

3 with f(1) = 0, f(−1) = 0, f(0) = 1, f ′(0) = 1. Find f(t).

(b) Let g(t) = a0+a1t+a2t
2

1+b1t+b2t2
with g(1) = 2.3, g(2) = 4.8, g(3) = 8.9, g(4) = 16.9, g(5) = 41. Find g(t).

Exercise 2 Let A be a nonsingular lower triangular matrix of order n.

(a) What is the cost of computing A−1?

(b) What is the cost of solving Ax = y by first computing A−1 and then forming the matrix vector
product A−1y to compute x? Compare with the the cost of the method for solving Ax = y with A
lower triangular matrix given in the notes.

Exercise 3 Are the following matrices positive definite?

(a) A =

 −1 2 3
2 5 −3
3 −3 2


(b) A =

(
1 a
a 1

)

Exercise 4 Perform the Cholesky decomposition of A =


4 6 2 −6
6 34 3 −9
2 3 2 −1
−6 −9 −12 38

 .

Exercise 5 You are given the Cholesky factorisation of A = LLT , A ∈ Rn×n positive definite.

(a) What is the Cholesky decomposition of B =

(
A uT

u 1

)
where u ∈ Rn, B ∈ R(n+1)×(n+1)

(b) What is the cost of computing the factorisation of B when the factorisation of A is given?

Exercise 6 Compute the LU factorisation of the matrix A =


−3 2 0 3
6 −6 0 −12
−3 6 −1 16
12 −14 −2 −25

 .

Exercise 7 For which values of a1, . . . an is the matrix A ∈ Rn×n given below nonsingular?

A =



a1 1 0 . . . 0 0
a2 0 1 . . . 0 0
...

...
...

. . .
...

...
an−2 0 0 · · · 1 0
an−1 0 0 · · · 0 1
an 0 0 . . . 0 0


.

Assuming that A is non singular,
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(a) how many flops do we need to solve Ax = y?

(b) What is the inverse of A?

Exercise 8 Compute the matrix norm of the following matrices. If A is non-singular, compute the norm
of A−1 and the condition number κ(A)

(a) A =

(
1 1
1 1

)

(b) A =

(
1 −1
1 1

)

Exercise 9 Compute the QR decomposition of A =

 2 8 13
4 7 −7
4 −2 −137


Exercise 10 Formulate the following problems as least-square problems.

(a) Minimise x21 + 2x22 + 3x23 + (x1 − x2 + x3 − 1)2 + (−x1 − 4x2 + 2)2

(b) Minimise 2(−6x2 + 4)2 + 3(−4x1 + 3x2 − 1)2 + 4(x1 + 8x2 − 3)2

Exercise 11 (2010) Let A ∈ Rn×n be a non-singular matrix, and consider three vectors b, c, f ∈ Rn.
Given two real numbers α and γ we want to solve the following linear system in x ∈ Rn and λ ∈ R.

Ax+ bλ = f

cTx+ αλ = γ . (1)

1. Write the system (1) in matrix form, i.e. My = g with M ∈ R(n+1)×(n+1) and y, g ∈ Rn+1.

2. Give a necessary and sufficient condition for the system (1) to admit a unique solution. Justify your
answer.

3. In what follows we assume that α− cTA−1b 6= 0.

4. To solve (1), we will use the following algorithm. Let z0 be the solution of Az = b and h0 be the
solution of Ah = f .

x = h0 −
γ − cTh0
α− cT z0

z0, λ =
γ − cTh0
α− cT z0

.

(a) Show that the above algorithm gives the solution to (1).

(b) Assuming that we are given the solution of the two linear equations Az = b and Ah = f , how
many additional operations are required to complete the algorithm.

Exercise 12. Cholesky decompositions Let A = (aij)i,j=1,...,n ∈ Rn×n be a symmetric matrix, i.e,
AT = A such that for all x ∈ Rn with x 6= 0 we have

xTAx > 0 .

Matrices satisfyng the above properties are known as positive-definite matrices
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1. Let ei ∈ Rn with all its entries equal to 0 except the i-th entry which is equal to 1. Show that, for
i = 1, . . . , n

aii = eTi Aei > 0 .

2. Let C be the Schur complement of a11 in A, i.e.

C = A22 −
1

a11
A21A12 ,

where

A =

(
a11 A12

A21 A22

)
with a11 is a scalar, A21 ∈ Rn−1, and A22 ∈ R(n−1)×(n−1) and A12 ∈ R1×(n−1).

Justify the fact that

C = A22 −
1

a11
A21A

T
21 .

3. Let v ∈ Rn−1 and define x ∈ Rn such that

x =

(
−(1/a11)AT21v

v

)
.

Show that xTAx = vTCv and that C is a positive-definite matrix.

4. In what follows we will show that there exists a lower-triangular matrix L ∈ Rn×n such that A = LLT .
This factorisation is known as the Cholesky decomposition.

(a) Let L be given by

L =

(
l11 0T

L21 L22

)
with l11 is a scalar, L21 ∈ Rn−1, and L22 ∈ R(n−1)×(n−1) and 0 ∈ Rn−1. Write the block structure
of the matrix LLT .

(b) Let A = LLT . Show that l11 =
√
a11, L21 = (1/l11)A21, and L22L

T
22 = A22 − L21L

T
21.

(c) Describe a recursive procedure to construct the lower-triangular matrix L such that A = LLT .

(d) Describe how one would use the above procedure to solve the linear equation Ax = y for A ∈ Rn×n
positive definite.

(e) Apply the Cholesky decomposition to the matrix

A =

 25 15 −5
15 18 0
−5 0 11



and use it to solve the equation Ax = y where y =

 30
15
−16

.

10 of 13



Mathematics for Signal and Systems
Dr M. DRAIEF

Chapter 2 Matrix Decomposition

Exercise 13 (2010) Let m and n be two positive integers with m ≤ n. We consider A ∈ R(n+1)×(m+1)

the matrix defined by

A =


1 x0 . . . xm0
1 x1 . . . xm1
...

...
...

1 xn . . . xmn

 ,

where x0, . . . , xn are n distinct real numbers.

Let 0 be the vector with all its entries equal to 0 (we will use the same notation for both the zero vector of
Rm+1 and the one of Rn+1).

1. Let v =


v0
v1
...
vm

 ∈ Rm+1.

(a) Show that if Av = 0 then v = 0.

Hint: Use the fact if the polynomial P (x) = v0 + v1x + · · · + vmx
m has n distinct zeros then

P (x) = 0.

(b) Using the previous question, show that if ATAv = 0 then v = 0.

(c) Fix y ∈ Rn+1. Justify the fact that the linear equation ATAx = AT y admits a unique solution.

2. In the remainder of this problem, we will denote this solution by w, i.e.

ATAw = AT y .

For v ∈ Rm+1 and y ∈ Rn+1, define g(v) = (y −Av)T (y −Av).

(a) Show that g(w) = yT y − yTAw, with w defined in 2. a) iii).

(b) Prove that g(v)− g(w) = (w − v)TATA(w − v).

(c) Show that for all v ∈ Rm+1, we have g(v) ≥ g(w) and that g(v) = g(w) if and only if v = w.

3. Let P be a polynomial such that P (x) =
∑m
k=0 vkx

k. We define the quantity

Φm(P ) =

n∑
i=0

(yi − P (xi))
2
.

Let v =


v0
v1
...
vm

 ∈ Rm+1 and y =


y0
y1
...
yn

 ∈ Rn+1.

(a) Show that Φm(P ) = g(v) .

(b) Using question 2.b), show that there exisist a polynomial Pw such that Φm(P ) ≥ Φm(Pw).

4. We now apply the analysis of question 2) c) to a numerical example. Let n = m = 3, x0 = −1, x1 =
0, x2 = 1, x3 = 2 and y0 = 1, y1 = 2, , y2 = 1, y3 = 0.

(a) Solve ATAv = AT y.

(b) Derive the expression of the polynomial in R3[X] that minimizes Φ3 and give the minimum value
of Φ3 on R3[X]. Justify your answer.
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Exercise 14 In this problem, we analyse the impact of perturbations on the solutions of linear equations.

1. We will consider the standard Euclidean norm ||x|| =
√
xTx, for x ∈ Rn and the associated matrix

norm
|||A||| = sup

x:||x||=1

||Ax|| .

(a) Show that the mapping A→ |||A||| defines a norm on Rn×n.

(b) Let x ∈ Rn, and A and B in Rn×n show that ||Ax|| ≤ |||A||| ||x|| and that |||AB||| ≤ |||A||| |||B|||.

2. In this question, we assume that A is a non-singular matrix in Rn×n and y a non-zero vector in Rn.
Let x0 ∈ Rn be the solution of Ax = y.

(a) Let x1 ∈ Rn be the solution of Ax1 = y + δy, where δy ∈ Rn. Prove that

||x0 − x1||
||x0||

≤ |||A||| |||A−1||| ||δy||
||y||

.

(b) Let x2 ∈ Rn be the solution of (A+ δA)x2 = y, where δA ∈ Rn×n. Prove that

||x0 − x1||
||x0||

≤ |||A||| |||A−1||| |||δA|||
|||A|||

.

(c) The coefficient κ(A) = |||A||| |||A−1||| is known a the condition number of A.

Show that κ(A) ≥ 1. Comment on the sensitivity of the solution of the equation Ax = y to
perturbations in terms of κ(A).

3. Let A ∈ Rn×n be a non-singular matrix with eigenvalues λ1, . . . , λn.

(a) Derive the eigenvalues of A−1.

(b) Show that |||A||| ≥ |λi| for all i = 1, . . . , n.

(c) Derive a lower bound for κ(A) in terms of the λis.

(d) Show that if A is (non singular) symmetric then

κ(A) = max
i=1...,n

|λi| max
i=1...,n

∣∣∣∣ 1

λi

∣∣∣∣ .
Hint: Use the fact that if A is symmetric then there exists an orthonormal basis of eigenvectors of A.

Exercise 15 Consider A = L+D+R with aii 6= 0 for i = 1, . . . , n, where L is a lower triangular matrix with
lii = 0, D a diagonal matrix (dii 6= 0) and R an upper triangular matrix with rii = 0 for all i ∈ {1, . . . , n}:

A =


3 1 − 1

4
1
2

1 5 7
5 3

− 2
3

1
2 2 − 1

8

1 2
3

1
6 7

 =


0 0 0 0

1 0 0 0

− 2
3

1
2 0 0

1 2
3

1
6 0


︸ ︷︷ ︸

L

+

 3 0 0 0

0 5 0 0

0 0 2 0

0 0 0 7


︸ ︷︷ ︸

D

+


0 1 − 1

4
1
2

0 0 7
5 3

0 0 0 0

0 0 0 0


︸ ︷︷ ︸

R

To solve Ax = b we describe the Jacobi Method. It proceeds in steps iterating

x(k+1) = x(k) +D−1
(
b−Ax(k)

)
and for k →∞ the method converges to x∗, the correct solution. This is only possible if |||D−1 (L+R) |||2 <
1.
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1. Does the Jacobi Method converge for the above matrix A?
If yes, conduct the method for A and use

b =


15

12

8

23

 and the start vector x(0) =


5

−2

6

2

 .

Iterate until you reach a vector x(k) where
∣∣x(k) − x∗∣∣ 6 10−2 for all i ∈ {1, . . . , 4}.

How many steps do you need? You should at least allow an accuracy of 10−4 for each iteration.

2. Now let B ∈ Rn×n be the the tridiagonal matrix

B = tridiag (c, a, b) =



a b 0 0 · · · 0
c a b 0 · · · 0
0 c a b · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · c a b
0 0 · · · 0 c a


where bc > 0 .

Show that the eigenvalues are λk = a+ 2
√
cb cos

(
kπ
n+1

)
and eigenvectors are

uk =



(
c
b

)1/2
sin
(
kπ
n+1

)
(
c
b

)2/2
sin
(

2kπ
n+1

)
...(

c
b

)n/2
sin
(
nkπ
n+1

)


for B .

Give the constraints for a, b and c such that the Jacobi-Method converges for all possible start vectors
and all n ∈ N.
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