
Mathematics for Signal and Systems Dr M. DRAIEF

Chapter 3 Polynomials

As described in the introduction of Chapter 1, applications of solving linear equations arise in a number of
different settings. In particular, we will in this chapter focus on the problem of modelling a continuous real
function f on some interval [a, b]. We will begin by illustrating this in the context of polynomial interpolation
where we will construct polynomials that exactly match the function f at certain fixed points of the interval
[a, b]. We will then investigate an other alternative to interpolation that is more suited to approximate
polynomials. To this we will define the continuous analogue of the discrete linear least-squares studied in
Chapter 2.

1 Polynomial interpolation

The problem of interpolating a function f : [a, b]→ R can be stated as: Given f continuous on the interval
[a, b] and n + 1 points {x0, x1, . . . , xn} satisfying a ≤ x0 < x1 < · · · < xn ≤ b, determine a polynomial
Pn ∈ Rn[X] such that

Pn(xi) = f(xi), ∀i = 0, . . . , n ,

where Pn ∈ Rn[X] means that

Pn(x) = a0 + a1x+ · · ·+ anx
n =

n∑
i=0

aix
i

and we say that the polynomial Pn has degree n.

We require n + 1 data points to construct an interpolating polynomial of degree n since if the number of
points is smaller than n, then we could construct infinitely many degree n interpolating polynomials and if
it is larger, then there would be no degree n interpolant.

Monomial basis The most straightforward way of solving the interpolation problem is to notice that for
the choice of the interpolant Pn(x) = a0 + a1x+ . . . anx

n =
∑n
i=0 aix

i we have

a0 + a1x1 + · · ·+ anx
n
1 = f(x1)

a0 + a1x2 + · · ·+ anx
n
2 = f(x2)

...

a0 + a1xn + · · ·+ anx
n
n = f(xn) .

In matrix form this can be rewritten as
1 x0 x20 . . . xn0
1 x1 x21 . . . xn1
...

...
...

...
...

1 xn x2n . . . xnn




a0
a1
...
an

 =


f(x0)
f(x1)

...
f(xn)

 .

Matrices of this form are called Vardemonde matrices and they are invertible since their determinant is given
by
∏n
i=0

∏n
j=i+1(xj − xi) which is non-zero if the xis are distinct. In particular, this implies that there is a

unique interpolant to f satisfying the above conditions. To solve the linear system above, we require O(n3)

Despite being straightforward, the use of the monomial basis 1, x, x2, ... for interpolating gives rise to
unpleasant numerical problems when attempting to determine the coefficients ai on a computer. The main
issue stems for the fact that the monomial basis functions look increasingly similar as we take higher and
higher powers. This in turn might lead to the coefficients ci to become very large in magnitude even if the
function f remains of modest size on [a, b]. To understand this phenomena, we can use an analogy with

linear algebra. In particular, try to express the vector

(
1
1

)
in the basis

(
1

10−10

)
and

(
1
0

)
.
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Lagrange basis An alternative to the monomial basis is to express the polynomial Pn in a different basis
L0, L1, . . . , Ln of polynomials of degree at most n in Rn[X], where Li(xk) = 0 for all k 6= i and Li(xi) = 1.
If such basis exists then it is not difficult to see that if we want to express Pn(x), the interpolant of f in
x0, . . . , xn, as a linear combination of the Lis then we have that

Pn(x) =

n∑
i=0

aiLi(x)

and ai = Pn(xi). It is not difficult to check that the Lagrange polynomials defined by

Li(x) =

∏n
k=0,k 6=i(x− xk)∏n
k=0,k 6=i(xi − xk)

,

does the trick. With the Lagrange basis, finding the coefficients for the interpolation does not require to
solve a linear equation.

Newton basis The monomial and the Lagrange bases represent the two extreme cases from a numerical
perspective to perform interpolation. Moreover, both share the shortcoming that one needs to have all the
data points and the values of f in advance to be able to perform the interpolation. In practise, these data
points may arrive one after the other requiring the recomputation of the interpolant when one getsa new data
point. It would therefore be useful if one could derive the interpolants recursively as the points are made
available to us. In what follows we will construct a basis Q0, Q1, . . . Qn such that Pn(x) =

∑n
i=0 aiQi(x) and

Pk(x) =
∑k
i=0 aiQi(x) interpolates f in the points {x0, . . . , xk} for k = 0, . . . , n.

Let us start by constructing the polynomial P0 of degree 0 that interpolatesf in x0 clearly P0(x) = f(x0).
Let P0 = a0Q0 where Q0(x) = 1 for all x and a0 = f(x0). Now, we use P0 to find P1 and a Q1 in R1[X]
that interpolates F in x0 and x1, i.e.

P1(x) = P0(x) + a1Q1(x) .

Note that
P1(x0) = P0(x0) + a1Q1(x0) = f(x0) + a1Q1(x0) .

As we require that P1(x0) = f(x0), this implies that a1Q1(x) = 0, i.e. either a1 = 0 (this only happens when
f(x0) = f(x1) while we are seeking a generic basis that works for all f) of Q1(x0) = 0. The latter condition
yields

Q1(x) = x− x0
and

P1(x) = a0 + a1(x− x0)

To determine a1, we use the interpolation condition for x1 which implies that

a1 =
f(x1)− a0
x1 − x0

.

Next, we determine P2 in R2[X] that interpolates f at x0, x1, x2 where P2(x) = P1(x) + a2Q2(x) and Q2

in R2[X] to be determined. The interpolation conditions together with the properties of the polynomial P1

imply that
Q2(x0) = Q2(x1) = 0 ⇒ Q2(x) = (x− x0)(x− x1) ,

and from Q2(x2) = 0 we get that

a2 =
f(x2)− P1(x2)

Q2(x2)
=
f(x2)− aa − a1(x2 − x0)

(x2 − x0)(x2 − x1)
.
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Following the same pattern, it is not difficult to see that one can construct Q1, Q2, Q3, . . . , Qn a basis of
Rn[X] such that, for k = 0, . . . n

Qk(x) =

k−1∏
i=0

(x− xi)

where Pk(x) the interpolant of f at x0, . . . , xk is given by Pk(x) =
∑k
i=0 aiQi(x) and

ai =
f(xi)−

∑i−1
j=0 ajQj(xi)

Qi(xi)
.

The above basis is known as the Newton basis. The entire procedure of constructing Pn can be written in
matrix form as follows

1 0 . . . . . . 0
1 (x1 − x0) 0 . . . 0

1 (x2 − x0) (x2 − x0)(x2 − x1)
. . . 0

...
...

...
... 0

1 (xn − x0) (xn − x0)(xn − x1) . . .
∏n−1
i=0 (xn − xi)




a0
a1
a2
...
an

 =


f(x0)
f(x1)
f(x2)

...
f(xn)

 .

With the newton form of the interpolant, one can easily update Pn to Pn+1 to incorporate a new data point
(xn+1, f(xn+1)). Note that solving the linear system to find the coefficients ai takes O(n2) steps.

We would like emphasise that the three methods above lead the same polynomial Pn. It is just expressed in
three different bases.

2 Orthogonal polynomials

Interpolation with high degree polynomials is not always the best way to approximate a function as the
polynomial might diverge form the function is is meant to approximate at points in the intervals (xi, xi+1)
(between the points of interpolation) as the degree of the polynomials increase. In fact the interpolation
only accounts for the points of interest x0, x1, . . . and ignores all other points. In this section, we consider
an alternative to polynomial interpolation, namely polynomial approximation where we want to find a
polynomial Pn ∈ Rn[X] such that Pn(xi) ≈ f(xi) for i = 1, . . . ,m where m ≥ n. When m = n we have seen
that such a polynomial exists and is unique. when m > n we must settle with an approximation, together
with a method for quantifying the error of this approximation. For example, we could choose to minimise
the maximum error

min
P∈Rn[X]

max
0≤i≤m

|f(xi)− P (xi)|

or the sum of the squares of the errors

min
P∈Rn[X]

m∑
i=0

(f(xi)− P (xi))
2 .

Alternatively, one could ignore the specific points and measure the entire interval of interest [a, b]

min
P∈Rn[X]

max
x∈[a,b]

|f(x)− P (x)| or min
P∈Rn[X]

∫ b

a

(f(x)− P (x))2dx .

Polynomial approximation In this section we will focus the latter error that can be seen as the contin-
uous analogue of the standard linear least-squares method.

Example 1 Find a polynomial P ∈ R1[X] that minimises
∫ 1

0
(ex − P (x))2dx.
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In general suppose that we are interested in expressing the polynomial Pn that minimises
∫ b
a

(f(x)−P (x))2dx
in a bais φ1, . . . , φn of Rn[X], i.e.

P (x) =

n∑
i=0

akφk(x) .

In this case

E(a0, . . . , an) =

∫ b

a

(f(x)− P (x))2dx = 〈f, f〉 − 2

n∑
i=0

ai〈f, φi〉+

n∑
i=0

n∑
k=0

aiak〈φi, φk〉

where 〈g, h〉 = 〈h, g〉 =
∫ b
a
g(x)h(x)dx . In particular to minimise E(a0, . . . , an) we need to find ai such that

∂E/∂xi = 0 which implies

〈f, φi〉 =

n∑
k=0

ak〈φi, φk〉

In matrix form this can be rewritten as


〈φ0, φ0〉 〈φ0, φ1〉 . . . 〈φ0, φn〉
〈φ1, φ0〉 〈φ1, φ1〉 . . . 〈φ1, φn〉

...
...

. . .
...

〈φn, φ0〉 〈φn, φ1〉 . . . 〈φn, φn〉




a0
a1
...
an

 =


〈f, φ0〉
〈f, φ1〉

...
〈f, φn〉

 .

Suppose a = 0, b = 1 and φk(x) = xk then

〈φi, φj〉 =

∫ 1

0

xi+jdx =
1

i+ j + 1
.

The corresponding matrix is the well-known Hilbert matrix. This is a poor basis (supporting our earlier
findings when using the monomials for interpolating). In fact Hilbert matrices have very large condition
numbers, e.g. κ(H) ≈ 1014 where H is the Hilbert matrix of order 10 and it increases the larger the matrix.

Orthogonal polynomials and continuous least squares Here we will focus on more general errors by

investigating polynomials that minimise
∫ b
a

(f(x) − P (x))2w(x)dx for w a continuous, positive function on
[a, b] and we let

〈g, h〉 = 〈h, g〉 =

∫ b

a

g(x)h(x)w(x)dx .

Definition 1 We will say that two functions g and h are orthogonal if 〈g, h〉 = 0. Moreover, a set of
function φ0, φ1, . . . , φn is a system of orthogonal polynomials if

• for all k φk is a polynomial of exact degree k

• for all k 6= j, 〈φj , φk〉 = 0.

In particular if φ0, φ1, . . . , φn are orthogonal polynomials then (φ0, φ1, . . . , φn) is basis of Rn[X]. Moreover
if P ∈ Span(φ0, φ1, . . . , φn−1) then

〈P, φn〉 = 0 .

We now describe a mechanism for constructing orthogonal polynomials. The Gram-Schmidt process used to
orthogonalise vectors in Rn can in fact be employed here as well. More precisely, suppose that we have a
basis of Rn[X], P0, P1, . . . , Pn where the degree of Pk is exactly k, as matter of example this could be the
monomial basis Pi(x) = xi then the Gram-Schmidt algorithm takes the following form
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Pseudocode: Gram-Schmidt for polynomials

1. Let φ0 = P0

2. For k = 1, . . . , n

φk = pk −
∑k−1
i=0

〈pk,φi〉
〈φi,φi〉φi

Now suppose that one has a set of orthogonal polynomials φ0, . . . φn and seeks the next orthogonal polynomial
φn+1. Since the degree of φn is exactly n, then the degree of xφn(x) is n + 1 and one could perform the
Gram-Schmidt procedure on φ0(x), . . . φn(x), xφn(x) which forms a basis of Rn+1[X]. In particular

φn+1(x) = xφn(x)−
n∑
i=

〈xφn(x), φi(x)〉
〈φi, φi〉

φi(x) .

First notice that

〈xφn(x), φi(x)〉 =

∫ b

a

xφn(x)φi(x)w(x)dx

=

∫ b

a

φn(x)xφi(x)w(x)dx

= 〈φn(x), xφi(x)〉

Since xφi(x)Ri+1[X], then for i < n − 1 we have 〈φn(x), xφi(x)〉 = 0. this yields substantial simplification
in the Gram-Schmidt procedure. In particular

Theorem 1 Given a positive, continuous weight function w on [a, b] and an associated inner product

〈g, h〉 = 〈h, g〉 =

∫ b

a

g(x)h(x)w(x)dx ,

then a system of orthogonal polynomials can be generated as follows

φ0(x) = 1

φ1(x) = x− 〈x, 1〉
〈1, 1〉

φk(x) = xφk−1(x)− 〈xφk−1(x), φk−1(x)〉
〈φk−1(x), φk−1(x)〉

φk−1(x)− 〈xφk−1(x), φk−2(x)〉
〈φk−2(x), φk−2(x)〉

φk−2(x) .

Example 2 On [−1, 1] with wight function w(x) = 1 the orthogonal polynomials are knowns as Legendre
polynomials:

φ0(x) = 1

φ1(x) = x

φ2(x) = x2 − 1

3

φ3(x) = x3 − 3

5
x .

A general expression for these polynomials is as follows

φn(x) =
1

2nn!

dn

dxn
(x2 − 1)n ,

where dn

dxn (x2 − 1)n stands for the n-th derivative of (x2 − 1)n.
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Example 3 If we change the interval [a, b] and the weight we have a number of interesting families of
orthogonal polynomials.

• [a, b] = [−1, 1], and w(x) = 1√
1−x2

we have the notorious Chebyshev polynomials Tn that satisfy

Tn(cos(θ)) = cos(nθ) .

• [a, b] = (−∞,∞), and w(x) = e−x
2

we have the notorious Hermite polynomials Hn where

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

.

Let us go back to find the best approximation to a function f , given by
〈φ0, φ0〉 〈φ0, φ1〉 . . . 〈φ0, φn〉
〈φ1, φ0〉 〈φ1, φ1〉 . . . 〈φ1, φn〉

...
...

. . .
...

〈φn, φ0〉 〈φn, φ1〉 . . . 〈φn, φn〉




a0
a1
...
an

 =


〈f, φ0〉
〈f, φ1〉

...
〈f, φn〉

 .

In φ0, . . . , φn is an orthogonal basis of Rn[X] then one can create an orthonormal basis ψ0, . . . , ψn where

ψk =
φk

〈φk, φk〉1/2
.

and the coefficients ak such that Pn(x) =
∑n
k=0 akψk(x) where Pn given the minimum of 〈f(x)−P (x), f(x)−

P (x)〉 are then given by ak = 〈f, ψk〉.

Theorem 2 The unique L2 approximation to f , i.e the one that minimises the distance ||P − f ||2L2 =∫ b
a

(f(x)− P (x)2w(x)dx is given by

P ∗ =

n∑
k=0

〈f, ψk〉ψk ,

where 〈f, ψk〉 =
∫ b
a
f(x)ψk(x)w(x)dx .

To prove this note that 〈f − P ∗, ψk〉 = 0 for all k = 0, . . . , n and by consequence for all Q ∈ Rn[X] which
can be rewritten as a linear combination of the ψks we have 〈f − P ∗, Q〉 = 0

Example 4 Approximate f(x) = ex for [a, b] = [0, 1] and w(x) = 1.
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3 Exercises

Exercise 1 Consider the following inner product on R [X]:

〈P,Q〉 =

∫ 1

−1

P (x)Q (x)√
1− x2

dx .

1. Show that this is in fact an inner product.

2. For every n ∈ N there exists a unique polynomial Tn such that

Tn (cosx) = cos (nx) for all x ∈ R .

Verify this for n = 1, . . . , 4.
Write then a recursive representation for the general case (any n).

3. Verify:
(
1−X2

)
· T ′′n (X)−X · T ′n (X) = −n2 · Tn (X) by using X = cos (x)

4. Consider now P = a0 + a1x
1 + . . . + anx

n ∈ Rn [X]. We represent it as P = (a0, a1, · · · an)
T

. Given
this expression, find a matrix M such that P 7→

(
1− x2

)
P ′′ − xP ′. What are its range and kernel for

n = 3?

5. Determine the eigenvalues amd eigenvectors of M .

6. Show the orthogonality of the polynomials.
Hint: Use x = cos (σ) and substitute Tn (x) = cos (nσ)

Exercise 2 (2011) We consider the set Rn[X] of polynomials with real coefficients and degrees less or

equal to n endowed with the inner product 〈P,Q〉 =
∫ 1

−1 P (t)Q(t)dt.

1. Show that 〈P,Q〉 =
∫ 1

−1 P (t)Q(t)dt is indeed an inner product on Rn[X].

2. Give the expression of 〈P,Q〉 when P and Q are polynomials in R2[X] in terms of the coefficients of
both P and Q.

3. Let L be the application on Rn[X] such that

L(P ) =
d

dX

[
(X2 − 1)

dP

dX

]
.

(a) Show that if P ∈ Rn[X] then L(P ) ∈ Rn[X] and that L is a linear transformation on Rn[X].

(b) Prove that, for all P,Q in Rn[X], we have

〈L(P ), Q〉 = 〈P,L(Q)〉 .

Hint: Perform integrations by parts.

4. Let P0 = 1 and for k = 1, · · · , n, define the polynomial Pk of degree k as follows

Pk =
dk

dXk

(
(X2 − 1)k

)
,

the k-th derivative of (X2 − 1)k.

(a) Compute P1 and P2.
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(b) Derive an expression of L(Pk) in terms of P ′k and P ′′k the first and second derivatives of Pk,
respectively.

(c) Prove the following identity

(X2 − 1)
d[
(
X2 − 1)k

]
dX

− 2kX(X2 − 1)k = 0 .

(d) By differentiating (k + 1) times the above expression, establish that

(X2 − 1)P ′′k (X) + 2XP ′k(X) = k(k + 1)Pk(X) .

Hint: Use Leibniz’s formula

(fg)(k+1) =

k+1∑
i=1

(
k + 1

i

)
f (i)g(k+1−i) ,

where f (i) is the i-th derivative of f .

(e) Find the eigenvalues and eigenvectors of the transformation L.

5. Let k, l two integers between 0 and n.

(a) Express 〈L(Pk), Pl〉 and 〈L(Pl), Pk〉 in terms of 〈Pk, Pl〉.
(b) Prove that (P0, P1, · · · , Pn) is an orthogonal basis of Rn[X] when endowed with the inner product∫ 1

−1 P (t)Q(t)dt.

These polynomials are known as Legendre polynomials.
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