
OBJECTIVE-C
All the weird syntax and stuff

Monday, September 17, 12

PIAZZA

• Join our Piazza page at git.to/195piazza

Monday, September 17, 12

C

• Objective-C is a strict superset of C

• Everything that is true in C is also true in Objective-C

• Some of the iOS API uses pure C as opposed to
Objective-C. That means you’ll be calling C functions and
using/creating structs.

• You can use C code anywhere in Objective-C code, since
any Objective-C compiler can compile C code as well.

Monday, September 17, 12

POINTERS

• Instance references are pointers.

• Don’t think too much about this, since pointers are used consistently
throughout Objective-C.

• A message sent to an instance is directed to the pointer, so no need to
worry about dereferencing.

• Example:
 NSString* s = @"This is a string of length 29";
 int length = [s length];

• FYI: “NS” prefix stands for the NeXTSTEP operating system, from which
OS X and iOS were derived.

Monday, September 17, 12

NIL

• Let’s say we have:
 NSString* s;

• What is the value of s at this moment?

• Examples:
 if (nil == s) // do something

• What happens when you send a message to nil?
 NSString* s;
 NSString* upper = [s uppercaseString];

Monday, September 17, 12

METHOD NAMING

• You’ll find that Objective-C methods tend to be very verbose.

• NSString:
– stringByAppendingString:

• UIColor:
+ colorWithHue:saturation:brightness:alpha:

• These are the just the method names.

Monday, September 17, 12

https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/Reference/NSString.html#//apple_ref/occ/instm/NSString/stringByAppendingString:
https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/Reference/NSString.html#//apple_ref/occ/instm/NSString/stringByAppendingString:

METHOD DECLARATION

• Example from UIColor and NSString:

+ (UIColor*) colorWithRed: (CGFloat) red green: (CGFloat) green

 blue: (CGFloat) blue alpha: (CGFloat) alpha

- (unichar) characterAtIndex:(NSUInteger)index

• + signifies class methods

• - signifies instance methods

Monday, September 17, 12

PARAMETER LISTS

• Example from NSArray:
+ (id)arrayWithObjects:(id)firstObj, ...

• Usage:
NSArray* teas = [NSArray arrayWithObjects: @“earl grey”,
@“prince of wales”, @“genmai-cha”, nil];

• iOS Developer Library: git.to/ios

Monday, September 17, 12

ID

• You can typecast anything to id.

• You can typecast id to anything.

• It can legally receive any message.

• That doesn’t mean your program won’t crash.

• Unless id happens to be nil.

• Example:
+ (id)arrayWithObjects:(id)firstObj, ...

• Be aware.

Monday, September 17, 12

CLASSES

• No method overloading for methods of the same type (class vs.
instance).

• Global namespace

• Problems?

• 2 parts:

• Interface

• Implementation

Monday, September 17, 12

PARTS OF A CLASS

• @interface

• global method declarations

• @implementation

• instance variables

• method implementations

Monday, September 17, 12

FORMAT

• Example:
MyClass.h

#import “MySuperClass.h”
#import “MyProtocol.h”

@interface MyClass : MySuperClass <MyProtocol>
- (NSString*) sayHello;
@end

MyClass.m
#import “MyClass.h”

@implementation {
 // instance variables go here.
}
- (NSString*) sayHello {
 return @“Hello!”
}

@end

Monday, September 17, 12

@CLASS VS. #IMPORT

• Use @class when you just need to mention a class in the
header. For example, if OtherClass is a return type of one of
the public methods. It only tells the compiler that this is a valid
class.

• Use #import when you are subclassing OtherClass, or other
situations where you need to know more about a class, like its
members.

Monday, September 17, 12

NSOBJECT

• Like “Object” in Java.

• Must be declared explicitly, unlike in Java, where Object is
implied as a superclass if there is none specified.

• This is because Objective-C allows for different classes to be
roots of different object hierarchies.

• Example:
@interface MyClass : NSObject

Monday, September 17, 12

ALLOC, INIT

• alloc sets aside memory for the instance

• init actually initializes the new instance.

• Example:

NSArray* array = [[NSArray alloc] initWithObjects: @“pirate”,

@“ninja”, nil];

Monday, September 17, 12

SELF

• Like “this” in Java.

• Refers to what the instance really is, not the class where self is
mentioned.

Monday, September 17, 12

SUPER

• Class-based (not instance based).

Monday, September 17, 12

ACCESSORS

• In Java, they would be called something like “getName” and
“setName”. In Objective-C, they would be “name” and
“setName” by convention.

• Example:
[person setName: @“Alfred”];

NSString* name = [person name];

Monday, September 17, 12

PROPERTIES

• Syntactic sugar for accessors.

• Example:
person.name = @“Alfred”;
NSString* name = person.name;

• Why is this nice?

• Note: Properties do not allow access to instance variables
directly.

Monday, September 17, 12

INITIALIZER

• Example:
- (id) initWithName: (NSString*) name {
 self = [super init];
 if (self) {
 self.name = name;
 }
 return self;
}

Person* person = [[Person alloc] initWithName: @“Alfred”];

Monday, September 17, 12

