
CS162 - Assignment 2: The Full Battleship
Game
This assignment is intended to give you experience with designing an object-oriented program
with multiple classes. You will also get practice with Graphical User Interfaces, Java Interfaces,
Inheritance, and Polymorphism.

Assignment Overview:
You will be implementing a simplifed version of the full Battleship game. In this simplified
version, you do not need to worry about interactively placing the battleships on the board.
Instead, you will place the ships by editing a text file, and then loading the text file for your
board. To take a look at what this text file looks like, take a look here. The file represents a 10 x
10 board, with the '.' character representing an empty space. The ships are numbered 1 through 5,
and each occupied square in the text file is filled in with the corresponding number for that ship.
The numbers, along with the sizes of the battleships are as follows:

• (Index 4) Aircraft carrier (Size 5)
• (Index 3) Battleship (Size 4)
• (Index 2) Destroyer (Size 3)
• (Index 1) Submarine (Size 3)
• (Index 0) Patrol boat (Size 2)

The opponent's board is stored in a text file with a similar representation. You do not need to
write code to handle the loading of the board. We have provided a BattleshipBoard constructor
that takes a filename as an argument. Use this constructor to load the board. When you run the
game, you will need to specify the file names for the player's board and the opponent's board as a
command line argument.

http://classes.engr.oregonstate.edu/eecs/summer2012/cs162-400/assignments/assn2/playerBoard.txt

Your implementation must then play battleship according to the standard turn based rules of the
game. If you are not familiar with the rules (Milton Bradley version), look at this Wikipedia
article. Basically, you and your opponent take turns firing on each other. The first player to sink
all of his or her opponent's ships wins.
Requirement 1: Your game should display two boards (see the screenshot above). Your display
does not need to match the screenshot exactly, but it should have the same functionality:

1. The first board contains the locations of your 5 battleships and it also records the shots
taken by your opponent. Your GUI must update this board every time your opponent
takes a turn.

2. The second board allows you to specify the locations of your shots. You will shoot by
clicking on an appropriate square. This board also keeps track if the shots you took were
hits or misses. You need to display hits and misses differently (you can change the color,
change the symbol on the cell, etc. -- how you actually do this will be left up to you).

Requirement 2: You must also implement a computer player. The computer player needs a
strategy for deciding what shots to take. For this assignment, you must implement two different
types of strategies (below). You must use either inheritance or interfaces for these two types
of strategies.

1. The systematic player: The systematic player starts at (0,0) and systematically shoots
one square over from its previous shot. If the next shot goes beyond the edge of the
board, the systematic player starts again at column 0 on the next row. As an example, the
systematic player will shoot at (0,0), (0,1), to (0,9) and then start over at (1,0). You may
create a smarter version of the systematic player that shoots two squares over and
alternates starting at column 0 and column 1 on the next row.

2. The random player: The random player randomly selects a position on the board and
shoots at it. If the player has already shot at that location, the player picks another
location and shoots at it. To select random numbers in Java, use the Random class that is
part of Java and use the nextInt() method.

Before your program starts up, you will need to specify what type of computer player (ie.
systematic or random) you want to play against. This will be done as a command line argument
(see below)
Requirement 3: Finally, you need to indicate who won and that the game is over. You can do
this any way you like (eg. a JLabel or a dialog box) but you need to notify the user.
Before you begin, it is a good idea to design your game using the principles of Object-Oriented
design that we discussed in class. I recommend planning this out on paper first. Keep in mind
that the overall design of your code will be graded. You can ask a TA or the instructor if your
design is a good one.

Command line arguments
If you don't know what command line arguments are, take a look at these slides. Write a main
method, which will accept three command line arguments

• Parameter 1: Path to the playerBoard File (See playerBoard.txt in the "Files You will
need: " section).

• Parameter 2: Path to the opponentBoard File (See opponentBoard.txt in the "Files You
will need: " section).

http://classes.engr.oregonstate.edu/eecs/summer2012/cs162-400/assignments/assn2/CommandLine.pdf
http://en.wikipedia.org/wiki/Battleship_(game)
http://en.wikipedia.org/wiki/Battleship_(game)

• Parameter 3: A character (either 'r' or 's') representing which type of computer player to
use.

Here is an example of a command line (inside the "Program arguments" box in Eclipse):
opponentBoard.txt playerBoard.txt r

Bonus
The bonus for this assignment will be a free-form bonus. You can try adding anything that you
think will impress your graders. You may earn up to 10 bonus marks, with more difficult
additions earning you more bonus points. If you attempt the bonus, remember to hand in a
text file called "bonus.txt" describing what you added. Examples of things you can add
include:

• Make the display nicer by adding color, etc.
• Add sounds effects. If you do this, please remember to hand in the sound files.
• Come up with a smarter computer player
• Allow interactive placement of the battleships by the human player
• Come up with a way to automatically place the battleships for the computer player

Files
We will provide the BattleshipBoard class to help you. You can use it if you like. You may
modify any of the code we provide, but your code must be able to load the player and opponent
board files using the same format as the ones we provide. Files you will need:

• BattleshipBoard.java (Use this BattleshipBoard instead of Assignment 1's
BattleshipBoard)

• BattleshipException.java (The Exception class used by the Battleship game)
• Cell.java (This is a very simple class that stores the row and column)
• FireButton.java (This class extends the JButton class with a Cell object. This allows you

to return the row and column if you click on a Cell)
• playerBoard.txt (A file representation of an player board)
• opponentBoard.txt (A file representation of an opponent board)

Hints
• The components you need for a basic version of the game: a JFrame for the entire game,

2 JPanels with GridLayouts, and lots of FireButtons.
• The main function in BattleshipBoard may be confusing some students. The main method

should really either be: a) in a class by itself or b) in a top-level class that runs the whole
game.

• In your ActionListener's actionPerformed method, you will notice that it takes an
ActionEvent object. If you registered the ActionListener with a FireButton, you can get
the FireButton object that you clicked on by doing the following:
public void actionPerformed(ActionEvent arg0) {
 FireButton fb = (FireButton) arg0.getSource();
 // more stuff here...
}

http://classes.engr.oregonstate.edu/eecs/summer2012/cs162-400/assignments/assn2/opponentBoard.txt
http://classes.engr.oregonstate.edu/eecs/summer2012/cs162-400/assignments/assn2/playerBoard.txt
http://classes.engr.oregonstate.edu/eecs/summer2012/cs162-400/assignments/assn2/FireButton.java
http://classes.engr.oregonstate.edu/eecs/summer2012/cs162-400/assignments/assn2/FireButton.java
http://classes.engr.oregonstate.edu/eecs/summer2012/cs162-400/assignments/assn2/Cell.java
http://classes.engr.oregonstate.edu/eecs/summer2012/cs162-400/assignments/assn2/BattleshipException.java
http://classes.engr.oregonstate.edu/eecs/summer2012/cs162-400/assignments/assn2/BattleshipBoard.java
http://classes.engr.oregonstate.edu/eecs/summer2012/cs162-400/assignments/assn2/BattleshipBoard.java

Live Example (Applet Version):
Click HERE to view a live example of BattleshipBoardGUI.

• Select which type of BattleshipBoardGUI you want to see, by selecting the appropriate
button.

What to Turn In: (Remember to turn in the .java files NOT
the .class files)
Please hand in all the .java files for your assignment. Turn them in via Blackboard and TEACH.

• All .java files for your assignment. Do NOT hand in the .class files. If you have more
than 10 Java files, please zip up your handin files and submit as a .zip file.

• If you attempt the bonus, hand in a file called bonus.txt that describes what you added.

Grading Scheme:
You will be graded on the functionality of the game, the use of correct coding conventions, and
the overall design of your project.

http://classes.engr.oregonstate.edu/eecs/summer2012/cs162-400/assignments/assn2/Assignment2Example.html

