and Description

Representation

Well, but reﬂect; have we not several times
acknowledged that names rightly given are the
likenesses and images of the things which they name?

Socrates

Preview

After an image has been segmented into regions by methods such as those dis-
cussed in Chapter 10, the resulting aggregate of segmented pixels usually is rep-
resented and described in a form suitable for further computer processing.
Basically, representing a region involves two choices: (1) We can represent the
region in terms of its external characteristics (its boundary), or (2) we can rep-
resent it in terms of its internal characteristics (the pixels comprising the re-
gion). Choosing a representation scheme, however, is only part of the task of
making the data useful to a computer. The next task is to describe the region
based on the chosen representation. For example, a region may be represented
by its boundary, and the boundary described by features such as its length, the
orientation of the straight line joining its extreme points, and the number of
concavities in the boundary.

An external representation is chosen when the primary focus is on shape
characteristics. An internal representation is selected when the primary focus is
on regional properties, such as color and texture. Sometimes it may be neces-
sary to use both types of representation. In either case, the features selected as
descriptors should be as insensitive as possible to variations in size, translation,
and rotation. For the most part, the descriptors discussed in this chapter satisfy
one or more of these properties.
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FIGURE 11.1
Direction
numbers for

(a) 4-directional
chain code, and
(b) 8-directional

chain code.

. Representation

The segmentation techniques discussed in Chapter 10 yield raw data in the form
of pixels along a boundary or pixels contained in a region. Although these data
sometimes are used directly to obtain descriptors (as in determining the texture
of a region), standard practice is to use schemes that compact the data into rep-
resentations that are considerably more useful in the computation of descrip-
tors. In this section we discuss various representation approaches.

t1.1.1 Chain Codes

Chain codes are used to represent a boundary by a connected sequence of
straight-line segments of specified length and direction. Typically, this repre-
sentation is based on 4- or 8-connectivity of the segments. The direction of each
segment is coded by using a numbering scheme such as the ones shown in
Fiz. 11..1.

Digital images usually are acquired and processed in a grid format with equal
spacing in the x- and y-directions, so a chain code could be generated by fol-
lowing a boundary in, say, a clockwise direction and assigning a direction to the
segments connecting every pair of pixels. This method generally is unaccept-
able for two principal reasons: (1) The resulting chain of codes tends to be quite
long, and (2) any small disturbances along the boundary due to noise or im-
perfect segmentation cause changes in the code that may not be related to the
shape of the boundary.

An approach frequently used to circumvent the problems just discussed is to
resample the boundary by selecting a larger grid spacing, as illustrated in
Fig. 11.2(a). Then, as the boundary is traversed, a boundary point is assigned to
each node of the large grid, depending on the proximity of the original boundary
to that node, as shown in Fig. 11.2(b). The resampled boundary obtained in this
way then can be represented by a 4- or 8-code, as shown in Figs. 11.2(c) and (d),
respectively. The starting point in Fig. 11.2(c) is (arbitrarily) at the top, left dot, and
the boundary is the shortest allowable 4- or 8-path in the grid of Fig. 11.2(b). The
boundary representation in Fig. 11.2(c) is the chain code 0033 ... 01, and in
Fig. 11.2(d) itis the code 0766...12. As might be expected, the accuracy of the re-
sulting code representation depends on the spacing of the sampling grid.
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The chain code of a boundary depends on the starting point. However, the
code can be normalized with respect to the starting point by a straightforward
procedure: We simply treat the chain code as a circular sequence of direction
numbers and redefine the starting point so that the resulting sequence of num-
bers forms an integer of minimum magnitude. We can normalize also for rota-
tion by using the first difference of the chain code instead of the code itself. This
difference is obtained by counting the number of direction changes (in a coun-
terclockwise direction) that separate two adjacent elements of the code. For in-
stance, the first difference of the 4-direction chain code 10103322 is 3133030. If
we elect to treat the code as a circular sequence, then the first element of the
difference is computed by using the transition between the last and first com-
ponents of the chain. Here, the result is 33133030. Size normalization can be
achieved by altering the size of the resampling grid.

These normalizations are exact only if the boundaries themselves are invari-
ant to rotation and scale change, which, in practice, is seldom the case. For in-
stance, the same object digitized in two different orientations will in general have
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FIGURE 11.2

(a) Digital
boundary with
resampling grid
superimposed.
(b) Result of
resampling.

(c) 4-directional
chain code.

(d) 8-directional
chain code.
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FIGURE 11.3

(a) Object
boundary
enclosed by cells.
(b) Minimum
perimeter
polygon.

different boundary shapes, with the degree of dissimilarity being proportional to
image resolution. This effect can be reduced by selecting chain elements that are
large in proportion to the distance between pixels in the digitized image and/or
by orienting the resampling grid along the principal axes of the object to be coded,
as discussed in Section 11.2.2, or along its eigen axes, as discussed in Section 11.4.

11.1.7 Polygonal Approximations

A digital boundary can be approximated with arbitrary accuracy by a polygon.
For a closed curve, the approximation is exact when the number of segments in
the polygon is equal to the number of points in the boundary so that each pair
of adjacent points defines a segment in the polygon. In practice, the goal of
polygonal approximation is to capture the “essence” of the boundary shape
with the fewest possible polygonal segments. This problem in general is not triv-
1al and can quickly turn into a time-consuming iterative search. However, sev-
eral polygonal approximation techniques of modest complexity and processing
requirements are well suited for image processing applications.

Minimum perimeter polygons

We begin the discussion of polygonal approximations with a method for find-
ing minimum perimeter polygons. The procedure is best explained by an exam-
ple. Suppose that we enclose a boundary by a set of concatenated cells, as shown
in Fig. 11.3(a). It helps to visualize this enclosure as two walls corresponding to
the outside and inside boundaries of the strip of cells, and think of the object
boundary as a rubber band contained within the walls. If the rubber band is al-
lowed to shrink, it takes the shape shown in Fig. 11.3(b), producing a polygon
of minimum perimeter that fits the geometry established by the cell strip. If
each cell encompasses only one point on the boundary, the error in each cell be-
tween the original boundary and the rubber-band approximation at most would
be V2d, where d is the minimum possible distance between different pixels
(i.e., the distance between lines in the sampling grid used to produce the digi-
tal image). This error can be reduced by half by forcing each cell to be centered
on its corresponding pixel.
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Merging techniques

Merging techniques based on average error or other criteria have been applied
to the problem of polygonal approximation. One approach is to merge points
along a boundary until the least square error line fit of the points merged so far
exceeds a preset threshold. When this condition occurs, the parameters of the
line are stored, the error is set to 0, and the procedure is repeated, merging new
points along the boundary until the error again exceeds the threshold. At the end
of the procedure the intersections of adjacent line segments form the vertices
of the polygon. One of the principal difficulties with this method is that ver-
tices in the resulting approximation do not always correspond to inflections
(such as corners) in the original boundary, because a new line is not started
until the error threshold is exceeded. If, for instance, a long straight line were
being tracked and it turned a corner, a number (depending on the threshold) of
points past the corner would be absorbed before the threshold was exceeded.
However, splitting (discussed next) along with merging may be used to allevi-
ate this difficulty.

Splitting techniques

One approach to boundary segment splitting is to subdivide a segment suc-
cessively into two parts until a specified criterion is satisfied. For instance, a
requirement might be that the maximum perpendicular distance from a
boundary segment to the line joining its two end points not exceed a preset
threshold. If it does, the farthest point from the line becomes a vertex, thus sub-
dividing the initial segment into two subsegments. This approach has the ad-
vantage of seeking prominent inflection points. For a closed boundary, the
best starting points usually are the two farthest points in the boundary. For ex-
ample, Fig. 11.4(a) shows an object boundary, and Fig. 11.4(b) shows a subdi-
vision of this boundary (solid line) about its farthest points. The point marked
c is the farthest point (in terms of perpendicular distance) from the top bound-
ary segment to line ab. Similarly, point 4 is the farthest point in the bottom seg-
ment. Figure 11.4(c) shows the result of using the splitting procedure with a
threshold equal to 0.25 times the length of line ab. As no point in the new

Q |
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FIGURE 11.4
(a) Original
boundary.

(b) Boundary
divided into
segments based
on extreme
points. (c) Joining
of vertices.

(d) Resulting
polygon.
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FIGURE 11.5
Distance-versus-
angle signatures.
In (a) r(6) is
constant. In (b),
the signature
consists of
repetitions of the
pattern

r(6) = Asec# for
0=0=x/4and
r(6) = Acsc@ for
/4 <0 =<mu/2

boundary segments has a perpendicular distance (to its corresponding straight-
line segment) that exceeds this threshold, the procedure terminates with the
polygon shown in Fig. 11.4(d).

5

1 1.1.5 Signatures

A signature is a 1-D functional representation of a boundary and may be gen-
erated in various ways. One of the simplest is to plot the distance from the cen-
troid to the boundary as a function of angle, as illustrated in Fig. 11.5. Regardless
of how a signature is generated, however, the basic idea is to reduce the bound-
ary representation to a 1-D function, which presumably is easier to describe
than the original 2-D boundary.

Signatures generated by the approach just described are invariant to trans-
lation, but they do depend on rotation and scaling. Normalization with respect
to rotation can be achieved by finding a way to select the same starting point
to generate the signature, regardless of the shape’s orientation. One way to do
so is to select the starting point as the point farthest from the centroid, if this
point happens to be unique and independent of rotational aberrations for each
shape of interest. Another way is to select the point on the eigen axis (see Sec-
tion 11.4) that is farthest from the centroid. This method requires more com-
putation but is more rugged because the direction of the eigen axis is determined
by using all contour points. Yet another way is to obtain the chain code of the
boundary and then use the approach discussed in Section 11.1.1, assuming that
the coding is coarse enough so that rotation does not affect its circularity.

Based on the assumptions of uniformity in scaling with respect to both axes
and that sampling is taken at equal intervals of 6, changes in size of a shape re-
sult in changes in the amplitude values of the corresponding signature. One way
to normalize for this result is to scale all functions so that they always span the
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same range of values,say, [0, 1]. The main advantage of this method is simplicity,
but it has the potentially serious disadvantage that scaling of the entire function
depends on only two values: the minimum and maximum. If the shapes are
noisy, this dependence can be a source of error from object to object. A more
rugged (but also more computationally intensive) approach is to divide each
sample by the variance of the signature, assuming that the variance is not zero—
as in the case of Fig. 11.5(a)—or so small that it creates computational difficul-
ties. Use of the variance yields a variable scaling factor that is inversely
proportional to changes in size and works much as automatic gain control does.
Whatever the method used, keep in mind that the basic idea is to remove de-
pendency on size while preserving the fundamental shape of the waveforms.

Of course, distance versus angle is not the only way to generate a signature.
For example, another way is to traverse the boundary and, corresponding to
each point on the boundary, plot the angle between a line tangent to the bound-
ary at that point and a reference line. The resulting signature, although quite
different from the r(#) curve, would carry information about basic shape char-
acteristics. For instance, horizontal segments in the curve would correspond to
straight lines along the boundary, because the tangent angle would be constant
there. A variation of this approach is to use the so-called slope density function
as a signature. This function is simply a histogram of tangent-angle values. As a
histogram is a measure of concentration of values, the slope density function re-
sponds strongly to sections of the boundary with constant tangent angles
(straight or nearly straight segments) and has deep valleys in sections produc-
ing rapidly varying angles (corners or other sharp inflections).

' 1.1.4 Boundary Segments

Decomposing a boundary into segments often is useful. Decomposition reduces
the boundary’s complexity and thus simplifies the description process. This ap-
proach is particularly attractive when the boundary contains one or more sig-
nificant concavities that carry shape information. In this case use of the convex
hull of the region enclosed by the boundary is a powerful tool for robust de-
composition of the boundary.

As defined in Section 9.5.4, the convex hull H of an arbitrary set S is the
smallest convex set containing S. The set difference / — S is called the convex
deficiency D of the set S.To see how these concepts might be used to partition
a boundary into meaningful segments, consider Fig. 11.6(a), which shows an
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FIGURE 11.6
(a) A region, S,
and its convex
deficiency
(shaded).

(b) Partitioned
boundary.
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object (set §) and its convex deficiency (shaded regions). The region boundary
can be partitioned by following the contour of S and marking the points at
which a transition is made into or out of a component of the convex deficien-
cy. Figure 11.6(b) shows the result in this case. Note that in principle, this scheme
is independent of region size and orientation.

In practice, digital boundaries tend to be irregular because of digitization,
noise, and variations in segmentation. These effects usually result in convex
deficiencies that have small, meaningless components scattered randomly
throughout the boundary. Rather than attempt to sort out these irregularities
by postprocessing, a common approach is to smooth a boundary prior to parti-
tioning. There are a number of ways to do so. One way is to traverse the bound-
ary and replace the coordinates of each pixel by the average coordinates of &
of its neighbors along the boundary. This approach works for small irregulari-
ties, but it is time-consuming and difficult to control. Large values of k can re-
sult in excessive smoothing, whereas small values of k might not be sufficient in
some segments of the boundary. A more rugged technique is to use a polygo-
nal approximation, as discussed in Section 11.1.2, prior to finding the convex de-
ficiency of a region. Most digital boundaries of interest are simple polygons
(polygons without self-intersection). Graham and Yao [1983] give an algorithm
for finding the convex hull of such polygons.

The concepts of a convex hull and its deficiency are equally useful for de-
scribing an entire region, as well as just its boundary. For example, description
of a region might be based on its area and the area of its convex deficiency, the
number of components in the convex deficiency, the relative location of these
components, and so on. Recall that a morphological algorithm for finding the
convex hull was developed in Section 9.5.4. References cited at the end of this
chapter contain other formulations.

'1.1.5 Skeletons

An important approach to representing the structural shape of a plane region
is to reduce it to a graph. This reduction may be accomplished by obtaining the
skeleton of the region via a thinning (also called skeletonizing) algorithm. Thin-
ning procedures play a central role in a broad range of problems in image pro-
cessing, ranging from automated inspection of printed circuit boards to counting
of asbestos fibers in air filters. We already discussed in Section 9.5.7 the basics
of skeletonizing using morphology. However, as noted in that section, the pro-
cedure discussed there made no provisions for keeping the skeleton connected.
The algorithm developed here corrects that problem.

The skeleton of a region may be defined via the medial axis transformation
(MAT) proposed by Blum [1967]. The MAT of a region R with border B is as fol-
lows. For each point p in R, we find its closest neighbor in B. If p has more than one
such neighbor, it is said to belong to the medial axis (skeleton) of R. The concept
of “closest” (and the resulting MAT) depend on the definition of a distance (see
Section 2.5.3). Figure 11.7 shows some examples using the Euclidean distance. The
same results would be obtained with the maximum disk of Section 9.5.7.

The MAT of a region has an intuitive definition based on the so-called
“prairie fire concept.” Consider an image region as a prairie of uniform, dry
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grass, and suppose that a fire is lit along its border. All fire fronts will advance
into the region at the same speed. The MAT of the region is the set of points
reached by more than one fire front at the same time.

Although the MAT of a region yields an intuitively pleasing skeleton, direct
implementation of this definition typically is expensive computationally. Imple-
mentation potentially involves calculating the distance from every interior point
to every point on the boundary of a region. Numerous algorithms have been pro-
posed for improving computational efficiency while at the same time attempting
to produce a medial axis representation of a region. Typically, these are thinning
algorithms that iteratively delete edge points of a region subject to the constraints
that deletion of these points (1) does not remove end points, (2) does not break
connectivity, and (3) does not cause excessive erosion of the region.

In this section we present an algorithm for thinning binary regions. Region
points are assumed to have value 1 and background points to have value 0. The
method consists of successive passes of two basic steps applied to the contour
points of the given region, where, based on the definition given in Section 2.5.2,
a contour point 1s any pixel with value 1 and having at least one 8-neighbor val-
ued 0. With reference to the 8-neighborhood notation shown in Fig. 11.8, step
1 flags a contour point p, for deletion if the following conditions are satisfied:

(@ 2=N(p)=6
b T(p) =1
(©) P, py-ps=0

(d) pi-ps-ps =0 (11.1-1)

where N(p,) is the number of nonzero neighbors of p; ; that is,

N(pi) = po+ ps + -+ ps + py (11.1-2)

Py P2 P3

Py P P4

P7 Pa Ps

abc

FIGURE 11.7
Medial axes
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(dashed) of three
simple regions.

FIGURE 11.8

Neighborhood
arrangement used
by the thinning

algorithm.
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FIGURE 11.9
Mustration of
conditions (a)
and (b) in
Eqg.(11.1-1).In
this case
N(p;) = 4and
T(p) = 3.

and T(p,) is the number of 0-1 transitions in the ordered sequence p,, ps. ...,
Ps. Do P2 For example, N(p,) = 4and T(p,) = 3 in Fig. 11.9.

In step 2, conditions (a) and (b) remain the same, but conditions (c) and (d)
are changed to

(€)Ypr ps-ps=0
d)pr-ps-ps =0 (11.1-3)

Step 1 is applied to every border pixel in the binary region under consider-
ation. If one or more of conditions (a)—(d) are violated, the value of the point
in question is not changed. If all conditions are satisfied the point is flagged for
deletion. However, the point is not deleted until all border points have been
processed. This delay prevents changing the structure of the data during exe-
cution of the algorithm. After step 1 has been applied to all border points, those
that were flagged are deleted (changed to 0). Then step 2 is applied to the
resulting data in exactly the same manner as step 1.

Thus one iteration of the thinning algorithm consists of (1) applying step 1
to flag border points for deletion; (2) deleting the flagged points; (3) applying
step 2 to flag the remaining border points for deletion; and (4) deleting the
flagged points. This basic procedure is applied iteratively until no further points
are deleted, at which time the algorithm terminates, yielding the skeleton of
the region.

Condition (a) is violated when contour point p, only has one or seven
8-neighbors valued 1. Having only one such neighbor implies that p, is the end
point of a skeleton stroke and obviously should not be deleted. Deleting p, if it
had seven such neighbors would cause erosion into the region. Condition (b) is
violated when it is applied to points on a stroke 1 pixel thick. Hence this con-
dition prevents disconnection of segments of a skeleton during the thinning op-
eration. Conditions (c) and (d) are satisfied simultancously by the minimum
set of values: (py = Oor ps = 0) or (p, = Oand pg = 0).Thus with reference to
the neighborhood arrangement in Fig. 11.8,a point that satisfies these conditions,
as well as conditions (a) and (b), is an east or south boundary point or a north-
west corner point in the boundary. In either case, p, is not part of the skeleton
and should be removed. Similarly, conditions (¢’) and (d’) are satisfied simulta-
neously by the following minimum set of values: (p, = 0 or p; = 0) or (p, = 0
and ps = 0). These correspond to north or west boundary points, or a south-
cast corner point. Note that northeast corner points have p, = O and p, = 0, and
thus satisty conditions (c) and (d), as well as (¢’) and (d"). The same is true for
southwest corner points, which have p, = 0 and pgy = 0.
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Figure 11.10 shows a segmented image of a human leg bone and, superim-
posed, the skeleton of the region computed using the algorithm just discussed.
For the most part, the skeleton looks intuitively correct. There is a double branch
on the right side of the “shoulder” of the bone that at first glance one would ex-
pect to be a single branch, as on the corresponding left side. Note, however, that
the right shoulder is somewhat broader (in the long direction) than the left
shoulder. That is what caused the branch to be created by the algorithm. This
type of unpredictable behavior is not unusual in skeletonizing algorithms.

Boundary Descriptors

In this section we consider several approaches to describing the boundary of a
region, and in Section 11.3 we focus on regional descriptors. Parts of Sec-
tions 11.4 and 11.5 are applicable to both boundaries and regions.

Some Simple Descriptors

The length of a boundary is one of its simplest descriptors. The number of pix-
cls along a boundary gives a rough approximation of its length. For a chain-
coded curve with unit spacing in both directions, the number of vertical and
horizontal components plus V2 times the number of diagonal components gives
its exact length.

The diameter of a boundary B is defined as

Diam(B) = n}%x[D(p,-, p;)] (11.2%1)

where D is a distance measure (see Section 2.5.3) and p, and p; are points on the
boundary. The value of the diameter and the orientation of a line segment con-
necting the two extreme points that comprise the diameter (this line is called the

FIGURE 11.10
Human leg bone
and skeleton of
the region shown
superimposed.

EXAMPLE 11.1:
The skeleton of a
region.
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major axis of the boundary) are useful descriptors of a boundary. The minor
axis of a boundary is defined as the line perpendicular to the major axis, and of
such length that a box passing through the outer four points of intersection of
the boundary with the two axes completely encloses the boundary.” The box
just described is called the basic rectangle, and the ratio of the major to the minor
axis is called the eccentricity of the boundary. This also is a useful descriptor.

Curvature is defined as the rate of change of slope. In general, obtaining reli-
able measures of curvature at a point in a digital boundary is difficult because
these boundaries tend to be locally “ragged.” However, using the difference be-
tween the slopes of adjacent boundary segments (which have been represented
as straight lines) as a descriptor of curvature at the point of intersection of the seg-
ments sometimes proves useful. For example, the vertices of boundaries such as
those shown in Figs. 11.3(b) and 11.4(d) lend themselves well to curvature de-
scriptions. As the boundary is traversed in the clockwise direction, a vertex point
p is said to be part of a convex segment if the change in slope at p is nonnegative;
otherwise, p is said to belong to a segment that is concave. The description of cur-
vature at a point can be refined further by using ranges in the change of slope. For
instance, p could be part of a nearly straight segment if the change 1s less than 10°
or a corner point if the change exceeds 90°. Note, however, that these descriptors
must be used with care because their interpretation depends on the length of the
individual segments relative to the overall length of the boundary.

T% 4
IR

2.7 Shape Numbers

As explained in Section 11.1.1, the first difference of a chain-coded boundary
depends on the starting point. The shape number of such a boundary, based on
the 4-directional code of Fig. 11.1(a), is defined as the first difference of small-
est magnitude. The order n of a shape number is defined as the number of dig-
its in its representation. Moreover, 1 is even for a closed boundary, and its value
limits the number of possible different shapes. Figure 11.11 shows all the shapes
of order 4,6, and 8, along with their chain-code representations, first differences,
and corresponding shape numbers. Note that the first difference is computed by
treating the chain code as a circular sequence, as discussed in Section 11.1.1.
Although the first difference of a chain code is independent of rotation, in gen-
eral the coded boundary depends on the orientation of the grid. One way to
normalize the grid orientation is by aligning the chain-code grid with the sides
of the basic rectangle defined in the previous section.

In practice, for a desired shape order, we find the rectangle of order n whose
eccentricity (defined in the previous section) best approximates that of the basic
rectangle and use this new rectangle to establish the grid size. For example, if
n = 12, all the rectangles of order 12 (that is, those whose perimeter length is
12)are 2 X 4,3 X 3,and 1 X 5. If the eccentricity of the 2 X 4 rectangle best
matches the eccentricity of the basic rectangle for a given boundary, we estab-
lish a2 X 4 grid centered on the basic rectangle and use the procedure outlined

"Do not confuse this definition of major and minor axes with the eigen axes, which are defined in -
Section 11.4,
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Order 4 Order 6
L] ._—}—
Chaincode: 0 3 2 1 003221
Difference: 3 3 3 3 303303
Shapeno.: 3 3 3 3 033033
Order 8
e ———|—— .

Chaincode: 0 0 3 3 2 2 1 1 03032211 00032221
Difference: 3 03 03030 33133030 30033003
Shapeno: 03 03 0303 03033133 00330033

in Section 11.1.1 to obtain the chain code. The shape number follows from the
first difference of this code. Although the order of the resulting shape number
usually equals n because of the way the grid spacing was selected, boundaries
with depressions comparable to this spacing sometimes yield shape numbers of
order greater than 7. In this case, we specily a rectangle of order lower than n
and repeat the procedure until the resulting shape number is of order .

~ Suppose that n = 18 is specified for the boundary shown in Fig. 11.12(a). To
obtain a shape number of this order requires following the steps just discussed.
The first step is to find the basic rectangle, as shown in Fig. 11.12(b). The clos-
est rectangle of order 18 1s a 3 X 6 rectangle, requiring subdivision of the basic
rectangle as shown in Fig. 11.12(c), where the chain-code directions are aligned
with the resulting grid. The final step is to obtain the chain code and use its first
difference to compute the shape number, as shown in Fig. 11.12(d). B

Fourier Descriptors

Figure 11.13 shows a K-point digital boundary in the xy-plane. Starting at an ar-
bitrary point (x, y;), coordinate pairs (xo, yo), (x1, ¥1), (X2, ¥2)se -5 (Xx-15 V1)
are encountered in traversing the boundary, say, in the counterclockwise direc-
tion. These coordinates can be expressed in the form x(k) = x; and y(k) = y,.
With this notation, the boundary itself can be represented as the sequence of co-
ordinates s(k) = [x(k), y(k)], for k = 0,1, 2,..., K — 1. Moreover, each
coordinate pair can be treated as a complex number so that

s(k) = x(k) + jy(k) (11.2-2)

FIGURE11.11 All
shapes of order 4,
6, and 8. The
directions are
from Fig. 11.1(a),
and the dot
indicates the
starting point.

EXAMPLE 11.2:
Computing shape
numbers.
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FIGURE 11.12
Steps in the
generation of a
shape number.

Chaincode: 0 0 0 03 0032232221211
Difference;: 3 0003 1033013003130

Shapeno: 0 0 031 0330130031303

fork =0,1,2,..., K — 1.That is, the x-axis is treated as the real axis and the
y-axis as the imaginary axis of a sequence of complex numbers. Although the in-
terpretation of the sequence was recast, the nature of the boundary itself was
not changed. Of course, this representation has one great advantage: It reduces
a2-Dtoa 1-D problem.
From Section 4.2.1, the discrete Fourier transform (DFT) of s(k) is
1 K-1

a(u) = e D s(k)ermkik (11.2-3)
k=0

foru =0,1,2,..., K — 1.The complex coefficients a(u) are called the Fourier
descriptors of the boundary. The inverse Fourier transform of these coefficients
restores s(k ). That is,

K-1

s(k) = D a(u)e /K (11.2-4)

=0
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FIGURE 11.13 A digital boundary and its representation as a complex sequence. The points
(x0, yo) and (x,, y;) shown are (arbitrarily) the first two points in the sequence.

fork = 0,1,2,..., K — 1. Suppose, however, that instead of all the Fourier co-
efficients, only the first P coefficients are used. This is equivalent to setting
a(u) = Oforu > P — 1in Eq.(11.2-4). The result is the following approxima-
tion to s(k):

P-1

s(k) = ) a(u)e™ /X (11.2-5)

=0
fork = 0,1,2,..., K — 1. Although only P terms are used to obtain each com-
ponent of 5(k), k still ranges from 0 to K — 1.That is, the same number of points
exists in the approximate boundary, but not as many terms are used in the re-
construction of each point. Recall from discussions of the Fourier transform in
Chapter 4 that high-frequency components account for fine detail, and low-
frequency components determine global shape. Thus the smaller P becomes,
the more detail that is lost on the boundary. The following example demon-
strates this clearly.

¢ Figure 11.14 shows a square boundary consisting of K = 64 points and the re-
sults of using Eq. (11.2-5) to reconstruct this boundary for various values of P. Note
that the value of P has to be about 8 before the reconstructed boundary looks
more like a square than a circle. Next, note that little in the way of corner defin-
ition occurs until P is about 56, at which time the corner points begin to “break
out” of the sequence. Finally, note that, when P = 61, the curves begin to straight-
en, which leads to an almost exact replica of the original one additional coefficient
later. Thus, a few low-order coefficients are able to capture gross shape, but many
more high-order terms are required to define accurately sharp features such as
corners and straight lines. This result is not unexpected in view of the role played
by low- and high-frequency components in defining the shape of a region.

EXAMPLE 11.3:
[llustration of
Fourier
descriptors.
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FIGURE 11.14
Examples of
reconstruction
from Fourier
descriptors. P is
the number of
Fourier
coefficients used
in the
reconstruction of
the boundary.

-----------------

Original (K = 64) P=2 P=4 P=38
P14 P =24 P =32 P = 40
P =48 P =56 P = 61 Bl s

As demonstrated in the preceding example, a few Fourier descriptors can be
used to capture the gross essence of a boundary. This property is valuable, be-
cause these coefficients carry shape information. Thus they can be used as the
basis for differentiating between distinct boundary shapes, as we discuss in some
detail in Chapter 12.

We have stated several times that descriptors should be as insensitive as pos-
sible to translation, rotation, and scale changes. In cases where results depend
on the order in which points are processed, an additional constraint is that de-
scriptors should be insensitive to starting point. Fourier descriptors are not di-
rectly insensitive to these geometrical changes, but the changes in these
parameters can be related to simple transformations on the descriptors. For ex-
ample, consider rotation, and recall from elementary mathematical analysis that
rotation of a point by an angle 6 about the origin of the complex plane is ac-
complished by multiplying the point by ¢/”. Doing so to every point of s(k) ro-
tates the entire sequence about the origin. The rotated sequence is s(k)e” whose
Fourier descriptors are

1 K-1 ‘ ]
a(u) = — > s(k)e/e/2muk/K
K k=0
= a(u)e” (11.2-6)

foru = 0,1,2,...,K — 1.Thus rotation simply affects all coefficients equally by
a multiplicative constant term e/’
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Transformation Boundary Fourier Descriptor
Identity s(k) alu)

Rotation s/(k) = s(k)e” a,(u) = a(u)e
Translation si(k) = s(k) + A a(u) = a(u) + A, 8(u)
Scaling so(k) = as(k) a(u) = aalu) _
Starting point sp(k) = s(k — k) a,(u) = a(u)e Pmkau/K

Table 11.1 summarizes the Fourier descriptors for a boundary sequence s(k)
that undergoes rotation, translation, scaling, and changes in starting point. The
symbol A, is defined as A, = Ax + jAy, so the notation s (k) = s(k) + A,, in-
dicates redefining (translatin g) the sequence as |

s(k) = [x(k) + Ax] + j[y(k) + Ay]. - (11.2-7)

In other words, translation consists of adding a constant displacement to all co-
ordinates in the boundary. Note that translation has no effect on the descriptors,
except for u = 0, which has the impulse function §(x)." Finally, the expression
sp(k) = s(k — k,) means redefining the sequence as

sp = x(k — ko) + jy(k — ky), (11.2-8)

which merely changes the starting point of the sequence to k = k,from k = 0.
The last entry in Table 11.1 shows that a change in starting point affects all de-
scriptors in a different (but known) way, in the sense that the term multiplying
a(ut) depends on u.

124 Statistical Moments

The shape of boundary segments (and of signature wavelorms) can be described
quantitatively by using simple statistical moments, such as the mean, variance,
and higher-order moments. To see how this can be accomplished, consider
Fig. 11.15(a), which shows the segment of a boundary, and Fig. 11.15(b), which
shows the segment represented as a 1-D function g(r) of an arbitrary variable
r. This function is obtained by connecting the two end points of the segment
and rotating the line segment until it is horizontal. The coordinates of the points
are rotated by the same angle.

Let us treat the amplitude of g as a discrete random variable » and form an
amplitude histogram p(*v,-),i = 0,1,2,..., A — 1, where A4 is the number of dis-
crete amplitude increments in which we divide the amplitude scale. Then, keep-
ing in mind that p(v,) is an estimate of the probability of value »; occurring, it
follows from Eq. (3.3-18) that the nth moment of ¥ about its mean is

A-1

Mf?(?)) = E(Ur' - m)np(vi) (]-1-2_9)

i=0

"Recall from Chapter 4 that the Fourier transform of a constant is an impulse located al the origin. Re-
call also that the impulse function is zero everywhere else.

TABLE 11.1
Some basic
properties of
Fourier
descriptors.

Sec inside front cover
Consult the book web site
for a briefl review of prob-
ability theory.
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ab

FIGURE 11.15

(a) Boundary
segment.

(b) Representation
as a 1-D function.
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where
A-1
m= > vp(v,) (11.2-10)
i=0

The quantity m is recognized as the mean or average value of v and w, as its vari-
ance. Generally, only the first few moments are required to differentiate be-
tween signatures of clearly distinct shapes.

An alternative approach is to normalize g(r) to unit area and treat it as a his-
togram. In other words, g(r;) is now treated as the probability of value ; oc-
curring. In this case, r is treated as the random variable and the moments are

() = S(n— — m)"g(r) (11.2-11)

i=0

where

K-1 ;
m= > rgr). (11.2-12)
i=0
In this notation, K is the number of points on the boundary, and w,(r) is di-
rectly related to the shape of g(r). For example, the second moment u,(7) mea-
sures the spread of the curve about the mean value of » and the third moment
us(r) measures its symmetry with reference to the mean.

Basically, what we have accomplished is to reduce the description task to
that of describing 1-D functions. Although moments are by far the most popu-
lar method, they are not the only descriptors that could be used for this purpose.
For instance, another method involves computing the 1-D discrete Fourier trans-
form, obtaining its spectrum, and using the first g components of the spectrum
to describe g(r). The advantage of moments over other techniques is that im-
plementation of moments is straightforward and they also carry a “physical”
interpretation of boundary shape. The insensitivity of this approach to rotation
1s clear from Fig. 11.15. Size normalization, if desired, can be achieved by scal-
ing the range of values of g and r.

% Regional Descriptors

In this section we consider various approaches for describing image regions.
Keep in mind that it is common practice to use of both boundary and regional
descriptors combined.
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T % 73

.51 Some Simple Descriptors

The area of a region is defined as the number of pixels in the region. The perime-
ter of a region is the length of its boundary. Although area and perimeter are
sometimes used as descriptors, they apply primarily to situations in which the
size of the regions of interest is invariant. A more frequent use of these two de-
scriptors is in measuring compactness of a region, defined as (perimeter)?/area.
Compactness is a dimensionless quantity (and thus is insensitive to uniform
scale changes) and is minimal for a disk-shaped region. With the exception of
errors introduced by rotation of a digital region, compactness also is insensi-
tive to orientation.

Other simple measures used as region descriptors include the mean and me-
dian of the gray levels, the minimum and maximum gray-level values, and the
number of pixels with values above and below the mean.

"% Even a simple region descriptor such as normalized area can be quite use-
ful in extracting information from images. For instance, Fig. 11.16 shows a satel-
lite infrared image of the Americas. As discussed in more detail in Section 1.3.4,
images such as these provide a global inventory of human settlements. The
sensor used to collect these images has the capability to detect visible and near-
infrared emissions, such as lights, fires, and flares. The table alongside the images
shows (by region from top to bottom) the ratio of the area occupied by white
(the lights) to the total light area in all four regions. A simple measurement like
this can give, for example, a relative estimate by region of electrical energy con-
sumed. The data can be refined by normalizing it with respect to land mass per
region, with respect to population numbers, and so on. B

11.2.7 Topological Descriptors

Topological properties are useful for global descriptions of regions in the image
plane. Simply defined, topology is the study of properties of a figure that are un-
affected by any deformation, as long as there is no tearing or joining of the fig-
ure (sometimes these are called rubber-sheet distortions). For example, Fig. 11.17
shows a region with two holes. Thus if a topological descriptor is defined by the
number of holes in the region, this property obviously will not be affected by a
stretching or rotation transformation. In general, however, the number of holes
will change if the region is torn or folded. Note that, as stretching affects distance,
topological properties do not depend on the notion of distance or any proper-
ties implicitly based on the concept of a distance measure.

Another topological property useful for region description is the number of
connected components. A connected component of a region was defined in Sec-
tion 2.5.2. Figure 11.18 shows a region with three connected components. (See
Section 9.5.3 regarding an algorithm for computing connected components.)

The number of holes H and connected components C in a figure can be used
to define the Fuler number E:

E=C-H (11.3-1)

EXAMPLE 11.4:
Using area
computations to
extract
information from
images.
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Region no, Ratio of lights per
(from top) region to total lights

1 0.204
2 0.640
3 (0.049
4 0.107

FIGURE 11.16 Infrared images of the Americas at night. (Courtesy of NOAA.)



11.3 & Regional Descriptors

FIGURE 11.17 A region with two holes.

The Euler number is also a topological property. The regions shown in Fig. 11.19,
for example, have Euler numbers equal to 0 and —1, respectively, because the
“A” has one connected component and one hole and the “B” one connected
component but two holes.

Regions represented by straight-line segments (referred to as polygonal net-
works) have a particularly simple interpretation in terms of the Euler number.
Figure 11.20 shows a polygonal network. Classifying interior regions of such a
network into faces and holes often is important. Denoting the number of ver-
tices by V, the number of edges by Q, and the number of faces by F gives the
following relationship, called the Euler formula:

V—-Q+F=C-H (11.3-2)
which, in view of Eq. (11.3-1), is equal to the Euler number:
V—-0+F=C—-H
= E. (11.3-3)

The network shown in Fig. 11.20 has 7 vertices, 11 edges, 2 faces, 1 connected
region, and 3 holes; thus the Euler number is —2:

T—-11+2=1~3=-2,

FIGURE 11.18 A region with three connected components.

663
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EXAMPLE 11.5:
Use of connected
components for
extracting the
largest features in
a segmented
image.

ab
FIGURE 11.19 Regions with Euler number equal to 0 and —1, respectively.

Topological descriptors provide an additional feature that is often useful in
characterizing regions in a scene.

" Figure 11.21(a) shows a 512 X 512, 8-bit image of Washington, D.C. taken by
a NASA LANDSAT satellite. This particular image is in the near infrared band
(see Fig. 1.10 for details). Suppose that we want to segment the river using only
this image (as opposed to using several multispectral images, which would sim-
plify the task). Since the river is a rather dark, uniform region of the image,
thresholding is an obvious thing to try. The result of thresholding the image with
the highest possible threshold value before the river became a disconnected re-
gion is shown in Fig. 11.21(b). The threshold was selected manually to illustrate
the point that it would be impossible in this case to segment the river by itself
without other regions of the image also appearing in the thresholded result.
The objective of this example is to illustrate how connected components can be
used to “finish” the segmentation.

—Face

FIGURE 11.20 A region containing a polygonal network.
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The image in Fig. 11.21(b) has 1591 connected components (obtained using
8-connectivity) and its Euler number is 1552, from which we deduce that the
number of holes is 39. Figure 11.21(c) shows the connected component with the
largest number of elements (8479). This is the desired result, which we already
know cannot be segmented by itself from the image. Note how clean this result
is. If we wanted to perform measurements, like the length of each branch of the
river, we could use the skeleton of the connected component [Fig. 11.21(d)] to
do so. In other words, the length of each branch in the skeleton would be a rea-
sonably close approximation to the length of the river branch it represents.

. Texture

An important approach to region description is to quantify its texture content.
Although no formal definition of texture exists, intuitively this descriptor pro-
vides measures of properties such as smoothness, coarseness, and regularity
(Fig. 11.22 shows some examples). The three principal approaches used in image
processing to describe the texture of a region are statistical, structural, and spec-
tral. Statistical approaches yield characterizations of textures as smooth, coarse.

FIGURE 11.21

(a) Infrared
image of the
Washington,

D.C. area.

(b) Thresholded
image. (c) The
largest connected
component of (b).
Skeleton of (¢).



666  Chapter 11 = Representation and Description

abc

FIGURE 11.22 The white squares mark, from left to right, smooth, coarse, and regular textures. These are
optical microscope images of a superconductor, human cholesterol, and a microprocessor. (Courtesy of
Dr. Michael W. Davidson, Florida State University.)

grainy, and so on. Structural techniques deal with the arrangement of image
primitives, such as the description of texture based on regularly spaced paral-
lel lines. Spectral techniques are based on properties of the Fourier spectrum and
are used primarily to detect global periodicity in an image by identifying high-
energy, narrow peaks in the spectrum.

Statistical approaches

One of the simplest approaches for describing texture is to use statistical mo-
ments of the gray-level histogram of an image or region. Let z be a random
variable denoting gray levels and let p(z),i =0,1,2,...,L — 1, be the corre-
sponding histogram, where L is the number of distinct gray levels. From
Eq. (3.3-18), the nth moment of z about the mean is

|

,UL”(Z) = Z(Zf - m)”p(z,—) (113-4)

i=0

where m is the mean value of z (the average gray level):

thn

L-1
m= > 2i0( 21 (11.3-

i=0

)
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Note from Eq. (11.3-4) that uy = 1 and u; = 0. The second moment [the vari-
ance 0*(z) = py(z)] is of particular importance in texture description. It is a
measure of gray-level contrast that can be used to establish descriptors of rel-
ative smoothness. For example, the measure
R=1 . 11.3-6

I + o%(z) 25
is 0 for areas of constant intensity (the variance is zero there) and approaches
1 for large values of o(z). Because variance values tend to be large for gray-
scale images with values, for example, in the range 0 to 255, it is a good idea to
normalize the variance to the interval [0, 1] for use in Eq. (11.3-6). This is done
simply by dividing ¢*(z) by (L — 1) in Eq. (11.3-6). The standard deviation,
o(z),alsois used frequently as a measure of texture because values of the stan-
dard deviation tend to be more intuitive to many people.

The third moment,

2 — m)’p(z,), (11.3-7)

1s a measure of the skewness of the histogram while the fourth moment is a
measure of its relative flatness. The fifth and higher moments are not so easily
related to histogram shape, but they do provide further quantitative discrimi-
nation of texture content. Some useful additional texture measures based on
histograms include a measure of “uniformity,” given by

L—1
U= plz) (11.3-8)
=0

and an average entropy measure, which the reader might recall from basic in-
formation theory, or from our discussion in Chapter 8, is defined as

EP( ) log; p(z;). (11.3-9)

Because the p’s have values in the range [0, 1] and their sum equals 1, measure
U is maximum for an image in which all gray levels are equal (maximally uni-
form), and decreases from there. Entropy is a measure of variability and is 0
for a constant image.

71 Table 11.2 summarizes the values of the preceding measures for the three
types of textures highlighted in Fig. 11.22. The mean just tells us the average
gray level of each region and is useful only as a rough idea of intensity, not re-
ally texture. The standard deviation is much more informative; the numbers
clearly show that the first texture has significantly less variability in gray level
(it is smoother) than the other two textures. The coarse texture shows up clear-
ly in this measure. As expected, the same comments hold for R, because it mea-
sures essentially the same thing as the standard deviation. The third moment
generally is useful for determining the degree of symmetry of histograms and
whether they are skewed to the left (negative value) or the right (positive value).

EXAMPLE 11.6:
Texture measures
based on
histograms.
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TABLE 11.2
Texture measures
for the subimages

shown in
Fig. 11.22.

Standard Third
Texture  Mean deviation R (normalized) moment Uniformity Entropy
Smooth 82.64 11.79 0.002 —0.105 0.026 5.434
Coarse 143.56 74.63 0.079 =151 0.005 7.783
Regular 9872 3373 0.017 0.750 0.013 6.674

This gives a rough idea of whether the gray levels are biased toward the dark
or light side of the mean. In terms of texture, the information derived from the
third moment is useful only when variations between measurements are large.
Looking at the measure of uniformity, we again conclude that the first subim-
age is smoother (more uniform than the rest) and that the most random (low-
est uniformity) corresponds to the coarse texture. This is not surprising. Finally,
the entropy values are in the opposite order and thus lead us to the same con-
clusions as the uniformity measure did. The first subimage has the lowest vari-
ation in gray level and the coarse image the most. The regular texture is in
between the two extremes with respect to both these measures.

Measures of texture computed using only histograms suffer from the limita-
tion that they carry no information regarding the relative position of pixels with
respect to each other. One way to bring this type of information into the texture-
analysis process is to consider not only the distribution of intensities, but also
the positions of pixels with equal or nearly equal intensity values.

Let P be a position operator and let A be a k X k matrix whose element a;;
is the number of times that points with gray level z; occur (in the position spec-
ified by P) relative to points with gray level z;, with 1 = i, j = k. For instance,
consider an image with three gray levels,z; = 0,2z, = 1,and z; = 2, as follows:

00 0 1 2
L 18 1 1
2 21 &% 0
110 2 0
0 01 01

Defining the position operator P as “one pixel to the right and one pixel below”
yields the following 3 X 3 matrix Az

4 2 1
2 3 2
0 2 0

A:

where, for example, a;, (top left) is the number of times that a point with level
z; = 0 appears one pixel location below and to the right of a pixel with the
same gray level, and a5 (top right) is the number of times that a point with
level z; = 0 appears.one pixel location below and to the right of a point with
gray level z; = 2.The size of A is determined by the number of distinct gray lev-
els in the input image. Thus application of the concepts discussed in this section
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usually requires that intensities be requantized into a few gray-level bands in
order to keep the size of A manageable.

Let nn be the total number of point pairs in the image that satisfy P (in the pre-
ceding example n = 16, the sum of all values in matrix A). If a matrix C is
formed by dividing every element of A by #, then ¢;; 1s an estimate of the joint
probability that a pair of points satisfying P will have values (2 zj).Thc matrix
C is called the gray-level co-occurrence matrix. Because C depends on P, the
presence of given texture patterns may be detected by choosing an appropriate
position operator. For instance, the operator used in the preceding example is
sensitive to bands of constant intensity running at —45°. (Note that the highest
value in A was a;; = 4, partially due to a streak of points with intensity 0 and
running at —45°.) More generally, the problem is to analyze a given C matrix in
order to categorize the texture of the region over which C was computed. A set
of descriptors useful for this purpose includes the following;

1. Maximum probability
IT}.E}X(C,-J,-)

2. Element difference moment of order &

> X = jYey
i
3. Inverse element difference moment of order k
Zalli=fF i#j
! !
4. Uniformity

2 X

: /

5. Entropy

- 2 Eculongf';
i

The basic idea is to characterize the “content” of C via these descriptors. For
example, the first property gives an indication of the strongest response to P.The
second descriptor has a relatively low value when the high values of C are near
the main diagonal, because the differences (i — ;) are smaller there. The third
descriptor has the opposite effect. The fourth descriptor is highest when the ¢;;s
are all equal. As noted previously, the fifth descriptor is a measure of random-
ness, achieving its highest value when all elements of C are maximally random.

One approach for using these descriptors is to “teach” a system represen-
tative descriptor values for a set of different textures. The texture of an un-
known region is then subsequently determined by how closely its descriptors
maich those stored in the system memory. We discuss matching in more detail
in Chapter 12.

669
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a

b

€

FIGURE 11.23
(a) Texture
primitive.

(b) Pattern
generated by the
rule § — as.

(c) 2-D texture
pattern generated
by this and other
rules.

Structural approaches

As mentioned at the beginning of this section, a second major category of tex-
ture description is based on structural concepts. Suppose that we have a rule of
the form S — aS, which indicates that the symbol S may be rewritten as aS$ (for
example, three applications of this rule would yield the string aaaS). If a repre-
sents a circle [Fig. 11.23(a)] and the meaning of “circles to the right” is assigned
to a string of the form aaa... ,the rule § — aS§ allows generation of the texture
pattern shown in Fig. 11.23(b).

Suppose next that we add some new rules to this scheme: S — bA, A — cA,
A — ¢, A = bS,S — a, where the presence of a b means “circle down” and
the presence of a ¢ means “circle to the left.” We can now generate a string of
the form aaabccbaa that corresponds to a3 X 3 matrix of circles. Larger texture
patterns, such as the one shown in Fig. 11.23(c), can be generated easily in the
same way. (Note, however, that these rules can also generate structures that are
not rectangular.)

The basic idea in the foregoing discussion is that a simple “texture primi-
tive” can be used to form more complex texture patterns by means of some
rules that limit the number of possible arrangements of the primitive(s). These
concepts lie at the heart of relational descriptions, a topic that we treat in more
detail in Section 11.5.

Spectral approaches

As indicated in Section 5.4, the Fourier spectrum is ideally suited for describ-
ing the directionality of periodic or almost periodic 2-D patterns in an image.
These global texture patterns, although easily distinguishable as concentrations
of high-energy bursts in the spectrum, generally are quite difficult to detect with
spatial methods because of the local nature of these techniques.

Here, we consider three features of the Fourier spectrum that are useful for
texture description: (1) Prominent peaks in the spectrum give the principal




11.3 © Regional Descriptors 671

direction of the texture patterns. (2) The location of the peaks in the frequen-
cy plane gives the fundamental spatial period of the patterns. (3) Eliminating any
periodic components via filtering leaves nonperiodic image elements, which can
then be described by statistical techniques. Recall that the spectrum is sym-
metric about the origin, so only half of the frequency plane needs to be con-
sidered. Thus for the purpose of analysis, every periodic pattern is associated
with only one peak in the spectrum, rather than two.

Detection and interpretation of the spectrum features just mentioned often
are simplified by expressing the spectrum in polar coordinates to yield a func-
tion S(r, #), where S is the spectrum function and r and f are the variables in this
coordinate system. For each direction 6, S(r, #) may be considered a 1-D func-
tion S,(r). Similarly, for each frequency r, S,(8) is a 1-D function. Analyzing
S,(r) for a fixed value of 6 yields the behavior of the spectrum (such as the pres-
ence of peaks) along a radial direction from the origin, whereas analyzing S,(9)
for a fixed value of r yields the behavior along a circle centered on the origin.

A more global description is obtained by integrating (summing for discrete
variables) these functions:

S(r) = iSe(r) (11.3-10)
and
S(6) = %S,,(H) (11.3-11)

where R, is the radius of a circle centered at the origin.

The results of Egs. (11.3-10) and (11.3-11) constitute a pair of values
[S (7} (8)] for each pair of coordinates (r, 6). By varying these coordinates, we
can generate two 1-D functions, S(r) and §(8), that constitute a spectral-energy
description of texture for an entire image or region under consideration. Fur-
thermore, descriptors of these functions themselves can be computed in order
to characterize their behavior quantitatively. Descriptors typically used for this
purpose are the location of the highest value, the mean and variance of both the
amplitude and axial variations, and the distance between the mean and the high-
est value of the function.

2 Figure 11.24 illustrates the use of Egs. (11.3-10) and (11.3-11) for global tex-
ture description. Figure 11.24(a) shows an image with periodic texture, and
Fig. 11.24(b) shows its spectrum. Figures 11.24(c) and (d) show plots of S(r)
and §(8), respectively. The plot of S(r) is a typical structure, having high ener-
gy content near the origin and progressively lower values for higher frequen-
cies. The plot of S(#) shows prominent peaks at intervals of 45°, which clearly
correspond to the periodicity in the texture content of the image.

As an illustration of how a plot of S(#) could be used to differentiate between
two texture patterns, Fig. 11.24(e) shows another image whose texture pattern is
predominantly in the horizontal and vertical directions. Figure 11.24(f) shows
the plot of §(#) for the spectrum of this image. As expected, this plot shows peaks
at 90° intervals. Discriminating between the two texture patterns by analyzing
their corresponding S(#) waveforms would be straightforward. B

EXAMPLE 11.7:
Spectral texture.
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FIGURE 11.24 (a) Image showing periodic texture. (b) Spectrum. (¢) Plot of S(r). (d) Plot
of $(6). (e) Another image with a different type of periodic texture. (f) Plot of S(#).
(Courtesy of Dr. Dragana Brzakovic, University of Tennessee.)

- Moments of Two-Dimensional Functions

For a 2-D continuous function f(x, y),the moment of order (p + ¢) is defined as

. / / x?yif(x, y) dx dy (11.3-12)

for p.g = 0,1, 2,.... A uniqueness theorem (Papoulis [1991]) states that if
f(x, y) is piecewise continuous and has nonzero values only in a finite part of
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the xy-plane, moments of all orders exist, and the moment sequence (m,,) is
uniquely determined by f(x, y). Conversely, (m pq) uniquely determines f(x, y).
The central moments are defined as :

Ppq = /_:l:(x = X)(y = ¥)f(x ) dxdy (11.3-13)

where

B g B gy
X=— and y=—,.
Mg My

If f(x, y) is a digital image, then Eq. (11.3-13) becomes

Hpg = 2 2 (x = B)P(y = 7)f (x, y). (11.3-14)
The central moments of order up to 3 are

Moo = E E (x — i)o(y - f)of(x, y)
= > 2 f(xy)
y

= My
Mo = EE (x — %) (y—y)cf(x y)
x oy
m
= My 10(m00)
00
=0

Mo1 = E 2 (X — f)o(}’ - 9)'f(xy)

i
= Mg — ;E_; (m[m)

=0
M1 = E E(x - j).l(y - ﬁ)lf(x,y)

= My —
My

= My — XMy = Ay — Y

Moo = Z E (x — 3)2(}’ - y)“f(x»J’)

2 2
2mi miy
= My — o
Mg Myg
2
= o LT
— gy T
L)

= My — XMl
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Moz = 2 E (6 = f)u(y i f)zf(x, y)

Ha1 = 2 E(x - f)E(J’ - y)'f(x,y)
= rﬁm — QXM — Phtg + ZJ?zmm

Mz = 2 2@ = E]'(F — ¥ HE.9)
= g — By — By € T

M30 = 2 2 (2~ 2P0y — 7Y% 5)
= H’-l_go i 3Xmyy + 2¥°my,

o3 — Er, 2 (x = X)°%(y — #)f(x, )
= n:t[)3 - 3ymg, + 2y°my;.

In summary,

Moo = Mg Moz = Mgy — Y,

Hio =0 M30 = Mzp — 3Xmy, + 2f2m”,

Mop =0 Mo3 = Mg3 — 3ymg, + 25°my,

M1 = My — ymyg Ha1 = My — 2Xmy —§m20+252m(;1
Moo = Myy — XMy Mg = My — 2ymyy — Xmg, + Zyzmm-

The normalized central moments, denoted 7, ,, are defined as

My
S (11.3-15)
0o
where
+
S (11.3-16)

forp+qg=23,....
A set of seven invariant moments can be derived from the second and third
moments.”

d1 = Mo + M2 (11.3-17)
b, = (772{1 - 7?(12)2 T 47}‘%1 (11'3'1-8)

'Derivation of these results involves concepts that are beyond the scope of this discussion. The book by
Bell [1965] and the paper by Hu [1962] contain detailed discussions of these concepts. Moment invariants
can be generalized to n dimensions (Mamistvalov [1998]).
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&5 = (mso = 3ma)" + (3m21 = ms)" (11.3-19)
by = (Ti‘m + 'fhz)h + (7?2i + 7?(13) , (11.3-20)
s = - 37?12)(7?30 + 7}’12)[( 30 + 7]12)-

(M50
- 3(”‘?21 = 7]03)2] + (37?21 - 7103)(7?21 + 7?(:3) (11.3-21)
[ )+ le)z . (7?2| + "?{13)2]
b = ("?20 ”"102)[(7?30 + ""]'12)/2 - (’*‘72| Tk 77[13)2} (11.3-22)
+ 47?11(7?30 T+ 7?12)(7?2| T 7]1}3)
¢r = (3m21 — m03)(ms0 + mi2)[(ms0 + M)’
2 3(772| + "?03) } (37312 - 7?30)(7221 £3 ?703) (11.3-23)
[3(7?3{1 “ W|2)2 == (Thl E5 7)03)2]-
This set of moments is invariant to translation, rotation, and scale change.

= The image shown in Fig. 11.25(a) was reduced to half size in Fig. 11.25(b), EXAMPLE 11.8:
mirror-imaged in Fig. 11.25(c), and rotated by 2° and 45°, as shown in Figs. 11.25(d) ~ Two-dimensional
and (e). The seven moment invariants given in Egs. (11.3-17) through (11.3-23) ~moment

were then computed for each of these images, and the logarithm of the results I

were taken to reduce the dynamic range. As Table 11.3 shows, the results for

Figs. 11.25(b) through (e) are in reasonable agreement with the invariants com-

puted for the original image. The major cause of error can be attributed to the dig-

ital nature of the data, especially for the rotated images. &

- Use of Principal Components for Description

The material discussed in this section is applicable to boundaries and regions.
In addition, it can be used as the basis for describing sets of images that are reg-
istered spatially, but whose corresponding pixel values are different (e.g., the
three component images of a color RGB image). Suppose that we are given the
three component images of such a color image. The three images can be treat- .~ ""°° 0
ed as a unit by expressing each group of three corresponding pixels as a vector.  for a brief review of vec-
For example, let x,, x,, and x5, respectively, be the values of the first pixel in each 'O ¢ matrices.

of the three images. These three elements can be expressed in the form of a 3-D

column vector, X, where

See inside front cover

X3

This one vector represents one common pixel in all three images. If the images
are of size M X N, there will be a total of K = MN three-dimensional vectors
after all the pixels are represented in this manner. If we have n registered im-
ages, the vectors will be n-dimensional:

x=| "] (11.4-1)
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a
bic
de

FIGURE 11.25
Images used to
demonstrate
properties of
moment
invariants (see
Table 11.3).

Throughout this section, the assumption is that all vectors are column vectors
(i.e.,matrices of order n X 1).We can write them on a line of text simply by ex-
pressing them as x = (x;, x,, ... ,x,,)f, where “7T” indicates transpose.

We can treat the vectors as random quantities, just like we did when con-
structing a gray-level histogram. The only difference is that, instead of talking
about quantities like the mean and variance of the random variables, we now
talk about mean vectors and covariance matrices of the random vectors. The

mean vector of the population is defined as
m, = E{x} (11.4-2)
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Invariant (Log) Original Half Size Mirrored Rotated 2° Rotated 45° TABLE 11.3

Moment

b 6.249 6.226 6.919 6.253 6.318 invariants for the

b 17.180 16.954 19.955 17.270 16.803 images in

b5 22.655 23.531 26.689 22.836 19.724 Figs. 11.25(a)-(e).

&b, 22.919 24.236 20.901 23.130 20.437

s 45.749 48.349 53.724 46.136 40.525

oy 31.830 32.916 37.134 32.068 29.315

by 45.589 48.343 53.590 46.017 40.470

where E{-} is the expected value of the argument, and the subscript denotes that

m is associated with the population of x vectors. Recall that the expected value

of a vector or matrix is obtained by taking the expected value of each element.
The covariance matrix of the vector population is defined as

C, = E{(x - my)(x — m,) }. (11.4-3)

Because x is n dimensional, Cy and (x — m,)(x — m,)" are matrices of order
n X n. Element ¢;; of C, is the variance of x;, the ith component of the x vec-
tors in the population, and element ¢;; of C, is the covariance’ between ele-
ments x; and x; of these vectors. The matrix C, is real and symmetric. If elements
x;and x; are uncorrelated, their covariance is zero and, therefore, Gy = By = 0
Note that all these definitions reduce to their familiar one-dimensional coun-
terparts when n = 1.

For K vector samples from a random population, the mean vector can be
approximated from the samples by using the familiar averaging expression

1 K
m, = — Ex,‘.. (11.4-4)
K &

Similarly, by expanding the product (x — m,)(x — mx)T and using Egs. (11.4-2)
and (11.4-4) we would find that the covariance matrix can be approximated
from the samples as follows:

l K B
C, = — D xx, — mm,. (11.4-5)
K =

“! To illustrate the mechanics of Egs. (11.4-4) and (11.4-5), consider the four vec-  EXAMPLE 11.9:
torsx; = (0,0,0)",x;, = (1,0,0)",x; = (1,1,0)",and x, = (1,0,1)", where the C;]C’m]?}!ta“(’" of
transpose is used so that column vectors may be conveniently written horizon- ;nfj[gg\‘:;r:;fégl
tally on a line of text, as noted previously. Applying Eq. (11.4-4) yields the fol- 1 4¢rix.

lowing mean vector:

—_ = D

"Recall that the variance of a random variable x with mean m is defined as E{(x — m)*}. The covariance
of two random variables x; and x; is defined as E{(x — m)(x; — m,)} If the variables are uncorrelated,
their covariance is 0.
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Similarly, use of Eq. (11.4-5) yields the following covariance matrix:

31t
G=| L 8 =
i <4 38

All the elements along the main diagonal are equal, which indicates that the
three components of the vectors in the population have the same variance. Also,
elements x; and x,, as well as x; and x;, are positively correlated; elements x,
and x; are negatively correlated. =

Because C, is real and symmetric, finding a set of n orthonormal eigenvec-
tors always is possible (Noble and Daniel [1988]). Let e; and A;,i = 1,2,...,n,
be the eigenvectors and corresponding eigenvalues of C,," arranged (for con-
venience) in descending order so that A; = A, forj = 1,2,...,n — 1.Let A be
a matrix whose rows are formed from the eigenvectors of C,, ordered so that
the first row of A is the eigenvector corresponding to the largest eigenvalue, and
the last row is the eigenvector corresponding to the smallest eigenvalue.

Suppose that we use A as a transformation matrix to map the x’s into vec-
tors denoted by y’s, as follows:

y = Alx — m,). (11.4-6)

This expression is called the Hotelling transform, which, as will be shown short-
ly, has some interesting and useful properties.

It is not difficult to show that the mean of the y vectors resulting from this
transformation is zero; that is,

m, = E{y} = 0. (11.4-7)

It follows from basic matrix theory that the covariance matrix of the y’s is given
in terms of A and C, by the expression

C, = AC,A". (11.4-8)

Furthermore, because of the way A was formed, C, is a diagonal matrix whose
elements along the main diagonal are the eigenvalues of C,; that is,

A 0
C, = 3 y (11.4-9)
0 A,
The off-diagonal elements of this covariance matrix are 0, so the elements of the
y vectors are uncorrelated. Keep in mind that the A;’s are the eigenvalues of C,
and that the elements along the main diagonal of a diagonal matrix are its eigen-

values (Noble and Daniel [1988]). Thus C, and C; have the same eigenvalues.
In fact, the same 1s true for the eigenvectors.

"By definition, the eigenvectors and eigenvalues of an n X n matrix, C, satisfy the relation Ce; = Ae;,for
i=12,..,n
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Another important property of the Hotelling transform deals with the re-
construction of x from y. Because the rows of A are orthonormal vectors, it fol-
lows that A™' = A’ and any vector x can be recovered from its corresponding
y by using the expression

x = Aly + m,. (11.4-10)

Suppose, however, that instead of using all the eigenvectors of C, we form ma-
trix A, from the k eigenvectors corresponding to the k largest eigenvalues, yield-
ing a transformation matrix of order k X n. The y vectors would then be k
dimensional, and the reconstruction given in Eq. (11.4-10) would no longer be
exact (this is somewhat analogous to the procedure we used in Section 11.2.3
to describe a boundary with a few Fourier coefficients).

The vector reconstructed by using A, is

x=Aly + m,. (11.4-11)

It can be shown that the mean square error between x and X is given by the
expression

n k
j=1 j=1
n

= ;2 A (11.4-12)
j=k+1

The first line of Eq. (11.4-12) indicates that the error is zero if k = n (that is, if
all the eigenvectors are used in the transformation). Because the A;’s decrease
monotonically, Eq. (11.4-12) also shows that the error can be minimized by se-
lecting the k eigenvectors associated with the largest eigenvalues. Thus the
Hotelling transform is optimal in the sense that it minimizes the mean square
error between the vectors x and their approximations x. Due to this idea of
using the eigenvectors corresponding to the largest eigenvalues, the Hotelling
transform also is known as the principal components transform.

i Figure 11.26 shows six images generated by a 6-band multispectral scanner
operating in the wavelengths shown in Table 11.4. Viewing the images as shown
in Fig. 11.27 allows formation of a 6-dimensional vector x = (X, X,, ..., xﬁ)r
from each set of corresponding pixels in the images, as discussed at the begin-
ning of this section. The images in this particular application are of resolution
384 x 239 so the population consists of 91,776 vectors from which to compute
the mean vector and covariance matrix. Table 11.5 shows the eigenvalues of C,.
Note the dominance of the first two eigenvalues.

Use of Equation (11.4-6) generated a set of transformed y vectors corre-
sponding to the x vectors. From them, six principal component images were
assembled (images are constructed from vectors simply by applying Fig. 11.27
in reverse). Figure 11.28 shows the results. Component 1 denotes the image
formed from all the y, components of the transformed vectors, and so on for
the other five images. Recall from basic matrix theory that y;, for example, is
obtained by performing the inner (dot) product of the first row of A with the
column vector (x — m,‘)]r

EXAMPLE 11.10:
Use of principal
components to
describe images.
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FIGURE 11.26 Six
spectral images
from an airborne
scanner.
(Courtesy of the
Laboratory for
Applications of
Remote Sensing,
Purdue
University.)

TABLE 11.4

Channel numbers
and wavelengths.

Channel 1 Channel 2

Channel 3 Channel 4

Channel 5 Channel 6

Channel Wavelength band (microns)
1 0.40-0.44
2 0.62-0.66
3 0.66-0.72
4 0.80-1.00
5 1.00-1.40
6 2.00-2.60

The first row of A is the eigenvector corresponding to the largest eigenvalue
of the covariance matrix of the population, and this eigenvalue gives the variance
of the gray levels of the first transformed image. Thus based on the numbers
shown in Table 11.5, this image should have the highest contrast. That such is the
case is quite evident in Fig. 11.28. Because the first two images account for about
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:/.: X Spectral band 6
e ene Spectral band 5

xl L B LN J

X3 Spectral band 4

X3
X=\lx

g Spectral band 3

*3

6

Spectral band 2
Spectral band 1

FIGURE 11.27 Formation of a vector from corresponding pixels in six images.

Ay > A3 - Ay As Ag

3210 031.4 118.5 83.88 64.00 13.40

94% of the total variance, the fact that the other four principal-component im-
ages have low contrast is not unexpected. Thus if instead of storing all six images
for posterity, only the first two transformed images, along with m, and the first
two rows of A, were stored, a credible job of reconstructing an approximation
to the six original images could be done at a later date. This capability for per-
forming data compression, although not impressive by today’s standards is a use-
ful byproduct of the Hotelling transform. In terms of description, this means
describing the content of six images with two, plus the mean vector and first two
rows of the transformation matrix. The same argument would apply if instead of
entire images we were discussing regions.

8 In the preceding discussion we showed how to apply the principal compo-
nents transformation to sets of images or regions. In this example we illustrate
how to use principal components for describing boundaries and regions in a
single image. The approach is to form two-dimensional vectors from the coor-
dinates of the boundary or region. Consider the object shown in Fig. 11.29(a).
Vectors are formed from the coordinates of the pixels in the object if we wish

681

TABLE 11.5
Eigenvalues of
the covariance
matrix obtained

from the images
in Fig. 11.26.

EXAMPLE 11.11:
Use of principal
components for
describing
boundaries and
regions in a single
image.
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Component 1 Component 2

Component 3 Component 4

Component Component 6

FIGURE 11.28 Six principal-component images computed from the data in Fig. 11.26.
(Courtesy of the Laboratory for Applications of Remote Sensing, Purdue University.)

to describe the region. If we wish to describe the boundary, we only use the co-
ordinates of the points on the boundary.

The resulting vectors then are treated as a 2-D population of random vectors.
In other words, each pixel in the object is treated as a 2-D vector x = (a, b)”,
where a and b are the coordinate values of that pixel with respect to the x;- and
X»-axes. These vectors are used to compute the mean vector and covariance ma-
trix of the population (object). The problem is much simpler than before because
we are working in only two dimensions.

The net effect of using Eq. (11.4-6) is to establish a new coordinate system
whose origin is at the centroid of the population (the coordinates of the mean
vector) and whose axes are in the direction of the eigenvectors of C,, as shown
in Fig. 11.29(b). This coordinaté system clearly shows that the transformation in
Eq. (11.4-6) is a rotation transformation that aligns the data with the eigenvectors,
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a

bic

FIGURE 11.29 (a) An object. (b) Eigenvectors. (¢) Object rotated by using Eq. (11.4-6).
The net effect is to align the object along its eigen axes.

as shown in Fig. 11.29(c). In fact, this alignment is precisely the mechanism that
decorrelates the data. Furthermore, as the eigenvalues appear along the main di-
agonal of Cy, A, is the variance of component y, along eigenvector e;. The two
eigenvectors are perpendicular. The y-axes sometimes are called the eigen axes,
for obvious reasons. il

The concept of aligning a 2-D object with its principal eigenvectors plays an
important role in description. As noted earlier, description should be as inde-
pendent as possible to variations in size, translation, and rotation. The ability to
align the object with its principal axes provides a reliable means for removing
the effects of rotation. The eigenvalues are the variances along the eigen axes,
and can be used for size normalization. The effects of translation are account-
ed for by centering the object about its mean, as shown in Eq. (11.4-6). Keep in
mind the fact that the method of description derived in this section is equally
applicable to both regions and boundaries.

Relational Descriptors

R

We introduced in Section 11.3.3 the concept of rewriting rules for describing
texture. In this section we expand that concept in the context of relational de-
scriptors. These apply equally well to boundaries or regions, and their main pur-
pose is to capture in the form of rewriting rules basic repetitive patterns in a
boundary or region.

683
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ab

FIGURE 11.30
(a) A simple
staircase
structure.

(b) Coded
structure.

FIGURE 11.31
Sample
derivations for
the rules § — aA,
A — bS, and

A — b,

a a

‘ b
_ a

- T

Consider the simple staircase structure shown in Fig. 11.30(a). Assume that
this structure has been segmented out of an image and that we want to de-
scribe it in some formal way. By defining the two primitive elements a and b
shown, we may code Fig. 11.30(a) in the form shown in Fig. 11.30(b). The most
obvious property of the coded structure is the repetitiveness of the elements
a and b. Therefore, a simple description approach is to formulate a recursive
relationship involving these primitive elements. One possibility is to use the
rewriting rules:

(a) S — aA,
(b) A — bS,and
(c) A — b,

where § and A are variables and the elements a and b are constants corre-
sponding to the primitives just defined. Rule 1 indicates that S, called the start-
ing symbol, can be replaced by primitive a and variable A. This variable, in
turn, can be replaced by b and S or by b alone. Replacing A with 5S, leads
back to the first rule and the procedure can be repeated. Replacing A with b
terminates the procedure, because no variables remain in the expression. Fig-
ure 11.31 illustrates some sample derivations of these rules, where the num-
bers below the structures represent the order in which rules 1, 2, and 3 were
applied. The relationship between a and b is preserved, because these rules
force an a always to be followed by a b. Notably, these three simple rewriting
rules can be used to generate (or describe) infinitely many “similar” struc-
tures. As we show in Chapter 12, this approach also has the advantage of a
solid theoretical foundation.

b
(1,3)

(12, 1.2, 1,73)
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Because strings are 1-D structures, their application to image description
requires establishing an appropriate method for reducing 2-D positional relations
to 1-D form. Most applications of strings to image description are based on the
idea of extracting connected line segments from the objects of interest. One ap-
proach is to follow the contour of an object and code the result with segments
of specified direction and/or length. Figure 11.32 illustrates this procedure.

Another, somewhat more general, approach is to describe sections of an
image (such as small homogeneous regions) by directed line segments, which can
be joined in other ways besides head-to-tail connections. Figure 11.33(a) illus-
trates this approach, and Fig. 11.33(b) shows some typical operations that can
be defined on abstracted primitives. Figure 11.33(c) shows a set of specific prim-
itives consisting of line segments defined in four directions, and Fig. 11.33(d)
shows a step-by-step generation of a specific shape, where (~d) indicates the
primitive d with its direction reversed. Note that each composite structure has
a single head and a single tail. The result of interest is the last string, which
describes the complete structure.

String descriptions are best suited for applications in which connectivity of
primitives can be expressed in a head-to-tail or other continuous manner. Some-
times regions that are similar in terms of texture or other descriptor may not be
contiguous, and techniques are required for describing such situations. One of
the most useful approaches for doing so is to use tree descriptors.

A free T'1s a finite set of one or more nodes for which

(a) there is a unique node $ designated the root, and
(b) the remaining nodes are partitioned into m disjointed sets Ty, ..., T,,, each
of which in turn is a tree called a subtree of T.

The tree frontier is the set of nodes at the bottom of the tree (the leaves), taken
in order from left to right. For example, the tree shown in Fig. 11.34 has root $
and frontier xy.

Generally, two types of information in a tree are important: (1) information
about a node stored as a set of words describing the node, and (2) information
relating a node to its neighbors, stored as a set of pointers to those neighbors.

—Boundary

Starting
point—__
e

FIGURE 11.32
Coding a region
boundary with
directed line
segments.
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Abstracted Head Head

primitive

J b
H a
a+b “

a
aXb< axbh
b

[ _ Abstracted
primitive

Tail

t h ! h
f
& ¢+ (~d) d + [¢ + (~d)]
a+ b (a+ b)=c {d+[c+(~d)]}=k[(a+b)>:cc]
ab
C
d

FIGURE 11.33 (a) Abstracted primitives. (b) Operations among primitives. (c) A set of
specific primitives. (d) Steps in building a structure.

As used in image description, the first type of information identifies an image
substructure (e.g., region or boundary segment), whereas the second type defines
the physical relationship of that substructure to other substructures. For exam-
ple, Fig. 11.35(a) can be represented by a tree by using the relationship “inside
of.” Thus, if the root of the tree is denoted $, Fig. 11.35(a) shows that the first
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/\
/N

ab
FIGURE 11.35 (a) A simple composite region. (b) Tree representation obtained by
using the relationship “inside of.”

level of complexity involves a and ¢ inside $, which produces two branches em-
anating from the root, as shown in Fig. 11.35(b). The next level involves b inside
a, and d and e inside c. Finally, f inside e completes the tree.

Summary

The representation and description of objects or regions that have been segmented out
of an image are early steps in the operation of most automated processes involving im-
ages. These descriptions, for example, constitute the input to the object recognition meth-
ods developed in the following chapter. As indicated by the range of description
techniques covered in this chapter, the choice of one method over another is determined
by the problem under consideration. The objective is to choose descriptors that “capture”
essential differences between objects, or classes of objects, while maintaining as much
independence as possible to changes in factors such as location, size, and orientation.

References and Further Reading

The chain-code representation discussed in Section 11.1.1 was first proposed by Freeman
[1961,1974]. For current work using chain codes see Bribiesca [1999], who also has extended
chain codes to 3-D (Bribiesca [2000]). For a detailed discussion and algorithm to compute
minimum-perimeter polygons (Section 11.1.2) see Sklansky et al. [1972]. Typical
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work on polygonal approximations a decade ago is illustrated in the papers by Bengt-
soon and Eklundh [1991] and by Sato [1992]. The paper by Zhu and Chirlian [1995] pre-
sents an interesting approach to the detection of point inflections along a curve. See also
Hu and Yan [1997]. More recent work in this area focuses on invariant polygonal fitting
(Voss and Suesse [1997]), on methods for evaluating the performance of polygonal
approximation algorithms (Rosin [1997]), on generic implementations (Huang and Sun
[1999]), and on computational speed (Davis [1999]).

References for the discussion of signatures (Section 11.1.3) are Ballard and Brown
[1982] and Gupta and Srinath [1988]. See Preparata and Shamos [1985] regarding fun-
damental formulations for finding the convex hull and convex deficiency (Section 11.1.4).
See also the paper by Liu-Yu and Antipolis [1993]. Katzir et al. [1994] discuss the de-
tection of partially occluded curves. Zimmer et al. [1997] discuss an improved algorithm
for computing the convex hull, and Latecki and Lakdmper [1999] discuss a convexity
rule for shape decomposition.

The skeletonizing algorithm discussed in Section 11.1.5 is based on Zhang and Suen
[1984]. Some useful additional comments on the properties and implementation of this
algorithm are included in a paper by Lu and Wang [1986]. A paper by Jang and Chin
[1990] provides an interesting tie between the discussion in Section 11.1.5 and the mor-
phological concept of thinning introduced in Section 9.5.5. For thinning approaches in
the presence of noise see Shi and Wong [1994] and Chen and Yu [1996]. Shaked and
Bruckstein [1998] discuss a pruning algorithm useful for removing spurs from a skele-
ton. Fast computation of the medial axis transform is discussed by Sahni and Jenq [1992]
and by Ferreira and Ubéda [1999]. The survey paper by Loncaric [1998] is of interest
regarding many of the approaches discussed in Section 11.1.

Freeman and Shapira [1975] give an algorithm for finding the basic rectangle of a closed,
chain-coded curve (Section 11.2.1). The discussion on shape numbers in Section 11.2.2 s
based on the work of Bribiesca and Guzman [1980] and Bribiesca [1981]. For additional
reading on Fourier descriptors (Section 11.2.3), see the early papers by Zahn and Roskies
[1972] and by Persoon and Fu [1977]. See also Aguado et al.[1998] and Sonka ct al. [1999].
Reddy and Chatterji [1996] discuss an interesting approach using the FFT to achieve in-
variance to translation, rotation, and scale change. The material in Section 11.2.4 1s based
on elementary probability theory (see, for example, Peebles [1993] and Popoulis [1991]).

For additional reading on Section 11.3.2, see Rosenfeld and Kak [1982] and Ballard
and Brown [1982]. For an excellent introduction to texture (Section 11.3.3), see Haral-
ick and Shapiro [1992]. For an early survey on texture, see Wechsler [1980]. The papers
by Murino et al. [1998] and Garcia [1999], and the discussion by Shapiro and Stockman
[2001], are representative of current work in this field.

The moment invariant approach discussed in Section 11.3.4 is from Hu [1962]. Also
sce Bell [1965]. To get an idea of the range of applications of moment invariants, see
Hall [1979] regarding image matching and Cheung and Teoh [1999] regarding the use of
moments for describing symmetry. Moment invariants were generalized to n dimensions
by Mamistvalov [1998].

Hotelling [1933] was the first to derive and publish the approach that transforms dis-
crete variables into uncorrelated coefficients. He referred to this technique as the method
of principal components. His paper gives considerable insight into the method and is
worth reading. Hotelling’s transformation was rediscovered by Kramer and Mathews
[1956] and by Huang and Schultheiss [1963]. Principal components are still a basic tool
for image description used in numerous applications, as exemplified by Swets and Weng
[1996] and by Duda, Heart, and Stork [2001]. References for the material in Section 11.5
are Gonzalez and Thomason [1978] and Fu [1982]. See also Sonka et al. [1999].



Problems

11.1 % (a) Show that redefining the starting point of a chain code so that the resulting
sequence of numbers forms an integer of minimum magnitude makes the
code independent of the initial starting point on the boundary.

(b) Find the normalized starting point of the code 11076765543322.

11.2  (a) Show that the first difference of a chain code normalizes it to rotation, as ex-
plained in Section 11.1.1.

(b) Compute the first difference of the code 0101030303323232212111.

11.3 % (a) Show that the rubber-band polygonal approximation approach discussed in
Section 11.1.2 yields a polygon with minimum perimeter.

(b) Show that if each cell corresponds to a pixel on the boundary, the maximum
possible error in that cell is V2d, where d is the minimum possible horizon-
tal or vertical distance between adjacent pixels (i.e., the distance between
lines in the sampling grid used to produce the digital image).

11.4 * (a) Discuss the effect on the resulting polygon if the error threshold is set to zero
in the merging method discussed in Section 11.1.2.

(b) What would be the effect on the splitting method?

11.5 % (a) Plot the signature of a square boundary using the tangent angle method dis-
cussed in Section 11.1.3.

(b) Repeat for the slope density function.

Assume that the square is aligned with the x- and y-axes, and let the x-axis be the
reference line. Start at the corner closest to the origin.

11.6  Find an expression for the signature of each of the following boundaries, and plot
the signatures.

* (a) An equilateral triangle
(b) A rectangle
(e) Anellipse
11.7 Draw the medial axis of
* (a) A circle
* (b) A square
(¢) A rectangle
(d) An equilateral triangle
11.8  For each of the figures shown,

% (a) Discuss the action taken at point p by step 1 of the skeletonizing algorithm
presented in Section 11.1.5.

(b) Repeat for step 2 of the algorithm. Assume that p = 1 in all cases.

1 1 0 0 0 0 0 1 0 1 1 0
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11.9  With reference to the skeletonizing algorithm in Section 11.1.5, what would the
figure shown look like after

* (a) One pass of step 1 of the algorithm?
(b) One pass of step 2 (on the result of step 1, not the original image)?

. . . . - . . . .
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11.10 % (a) What is the order of the shape number for the figure shown?
(b) Obtain the shape number.

11.11 The procedure discussed in Section 11.2.3 for using Fourier descriptors consists
of expressing the coordinates of a contour as complex numbers, taking the DFT
of these numbers, and keeping only a few components of the DFT as descriptors
of the boundary shape. The inverse DFT is then an approximation to the origi-
nal contour. What class of contour shapes would have a DFT consisting of real
numbers and how would the axis system in Fig. 11.13 have to be set up to obtain
these real numbers?

*11.12 Give the smallest number of statistical moment descriptors needed to differen-
tiate between the signatures of the figures shown in Fig. 11.5.

11.13  Give two boundary shapes that have the same mean and third statistical mo-
ment descriptors, but different second moments.

*11.14 Propose a set of descriptors capable of differentiating between the shapes of
the characters 0,1, 8,9, and X. (Hini: Use topological descriptors in conjunction
with the convex hull.)

11.15 Consider a checkerboard image composed of alternating black and white
squares, each of size m X m. Give a position operator that would yield a diag-
onal co-occurrence matrix.

11.16  Obtain the gray-level co-occurrence matrix of a 5 X 5 image composed of a
checkerboard of alternating 1's and O’s if

% (a) the position operator P is defined as “one pixel to the right,” and
(b) “two pixels to the right.”
Assume that the top left pixel has value 0.
11.17  Prove the validity of Egs. (11.4-7), (11.4-8), and (11.4-9).

*11.18 It was mentioned in Example 11.10 that a credible job could be done of recon-
structing approximations to the six original images by using only the two



11.19

*11.20

11.21

*11.22

11.23

11.24

principal-component images associated with the largest eigenvalues. What would
be the mean square error incurred in doing so? Express your answer as a per-
centage of the maximum possible error.

For a set of images of size 64 X 64, assume that the covariance matrix given in
Eq.(11.4-9) turns out to be the identity matrix. What would be the mean square
error between the original images and images reconstructed using Eq. (11.4-11)
with only half of the original eigenvectors?

Under what conditions would you expect the major axes of a boundary, defined
in Section 11.2.1, to be equal to the eigen axes of that boundary?

Give a spatial relationship and corresponding tree representation for a checker-
board pattern of black and white squares. Assume that the top left element is
black and that the root of the tree corresponds to that element. Your tree can
have no more than two branches emanating from each node.

You are contracted to design an image processing system for detecting imper-
fections on the inside of certain solid plastic wafers. The wafers are examined
using an X-ray imaging system, which yields 8-bit images of 512 X 512 resolu-
tion. In the absence of imperfections, the images appear “bland.” having a mean
gray level of 100 and variance of 400. The imperfections appear as bloblike re-
gions in which about 70% of the pixels have excursions in mtensity of 50 gray
levels or less about a mean of 100. A wafer is considered defective if such a re-
gion occupies an area exceeding 20 X 20 pixels in size. Propose a system based
on texture analysis.

A company that bottles a variety of industrial chemicals has heard of your suc-
cess solving imaging problems and hires you to design an approach for detect-
ing when bottles are not full. The bottles appear as shown in the following figure
as they move along a conveyor line past an automatic filling and capping station.
A bottle is considered imperfectly filled when the level of the liquid is below the
midway point between the bottom of the neck and the shoulder of the bottle. The
shoulder is defined as the region of the bottle where the sides and slanted por-
tion of the bottle intersect. The bottles are moving, but the company has an imag-
ing system equipped with a illumination flash front end that effectively stops
motion, so you will be given images that look very close to the sample shown
here. Based on the material you have learned up to this point, propose a solu-
tion for detecting bottles that are not filled properly. State clearly all assumptions
that you make and that are likely to impact the solution you propose.

Having heard about your success with the bottling problem, you are contacted
by a fluids company that wishes to automate bubble-coun ting in certain process-
es for quality control. The company has solved the imaging problem and can
obtain 8-bit images of resolution 700 X 700 pixels, such as the ones shown. Each
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image represents an area of 7 cm”. The company wishes to do two things with
each image: (1) Determine the ratio of the area occupied by bubbles to the total
area of the image, and (2) count the number of distinct bubbles. Based on the ma-
terial you have learned up to this point, propose a solution to this problem. In
your solution, make sure to state the physical dimensions of the smallest bub-
ble your solution can detect. State clearly all assumptions that you make and
that are likely to impact the solution you propose.




