

Fundamental of Programming (C)

Lecturer: Omid Jafarinezhad

Lecture 1 Introduction and Brief History

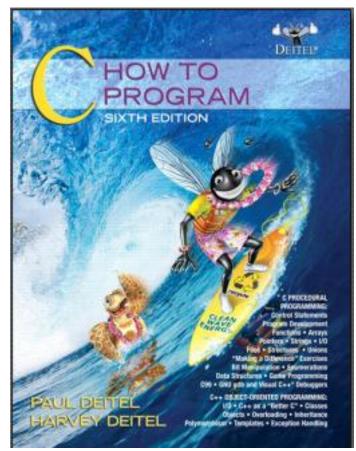
Department of Computer Engineering

1

Sharif University of Technology

Outline

- Review Of Course Materials
- Grading Policy
- An Overview Of Computer
 - Computer Components
 - Hardware
 - Software
- Introduction To Programming
 - programming paradigm
 - Machine Languages
 - Assembly Languages
 - High-Level Languages
- History Of C/C++
- Typical C Program Development Environment
 - Compilation Process


Review Of Course Materials

- Computer number format
- Data Types, Variables, Operators, Input/output
- Algorithm and Pseudo code
- Functions
- Strings and Pointers
- Arrays, Structures
- Files
- Object-Oriented Programming

Core reference

• Deitel, C How to Program, Sixth edition, Pearson Education

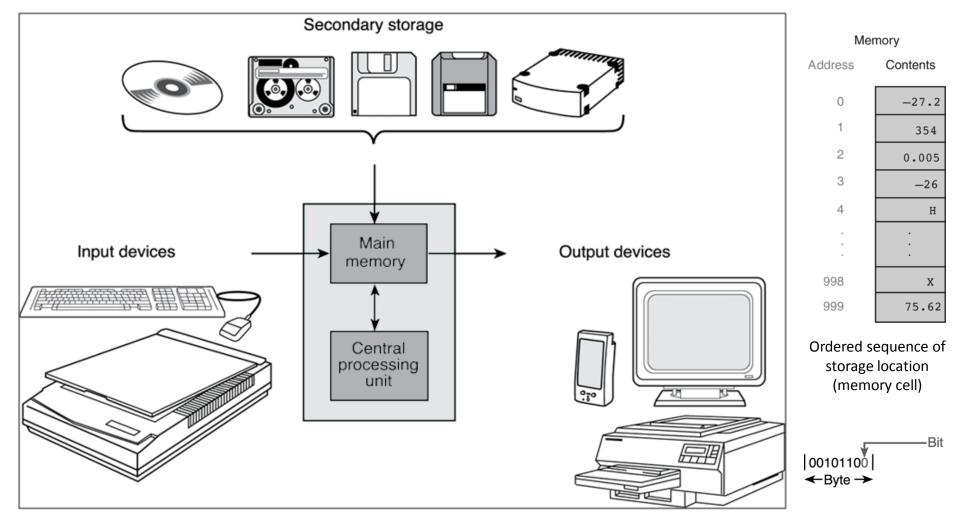
Department of Computer Engineering

Grading policy

- Quizzes: 10%
- Assignments: 20%
- Midterm exam: 20%
- Final exam: 35%
- Final programming projects: 15%
- Many bonus chances ...

An Overview Of Computer

- Computer:
 - programmable general purpose machine
 - can not do anything without a Program
 - receives input
 - letters, numbers, images
 - processes and stores input
 - Provides output in a useful format



Computer Components

- Hardware
 - the physical parts or components of computer such as monitor, keyboard, hard disk, mouse, etc.
- Software
 - instructions you write to command computers to perform actions on hardware

Overview of Computer Hardware

Sharif University of Technology

logical units

- Regardless of differences in physical appearance, virtually every computer may be envisioned as divided into six logical units or sections
- Input unit : receiving section obtains information (data and computer programs) from input devices and places it at the disposal of the other units so that it can be processed

- input devices: keyboards and mouse

Output unit

 This shipping section takes information that the computer has processed and places it on various output devices to make it available for use outside the computer

Memory unit

- rapid-access, relatively low-capacity
- warehouse section retains information that has been entered through the input unit, making it immediately available for processing when needed
- The memory unit also retains processed information until it can be placed on output devices by the output unit
- Information in the memory unit is volatile—it's typically lost when the computer's power is turned off
- The memory unit is often called either memory or primary memory

Arithmetic and logic unit (ALU)

- manufacturing section performs calculations
 - addition, subtraction, multiplication and division
 - It also contains the decision mechanisms that allow the computer, for example, to compare two items from the memory unit to determine whether they're equal

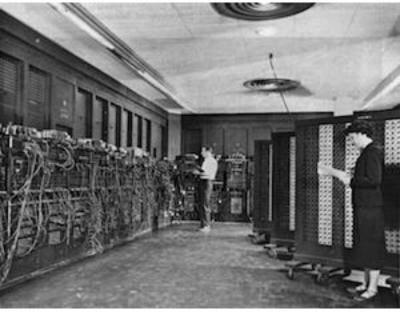
• the ALU is usually implemented as part of the next logical unit, the CPU

Central processing unit (CPU)

- administrative section coordinates and supervises the operation of the other sections
 - tells the input unit when to read information into the memory unit
 - tells the ALU when information from the memory unit should be used in calculations
 - tells the output unit when to send information from the memory unit to certain output devices
- Multiprocessors computers have multiple CPUs and, hence, can perform many operations simultaneously
 - A multi-core processor implements multiprocessing on a single integrated circuit chip
 - a dual-core processor has two CPUs
 - a quad-core processor has four CPUs

Secondary storage unit

- long-term
- high-capacity warehousing section
- Programs or data not actively being used by the other units normally are placed on secondary storage devices until they're again needed
- Information on secondary storage devices is said to be persistent—it is preserved even when the computer's power is turned off
 - Hard drives, CDs, DVDs and flash drives



History - First Generation Computers

- Mid-1940s
- used vacuum tubes
- huge and complex

The ENIAC, weighing 30 tons, using 200 kilowatts of electric power and consisting of 18,000 vacuum tubes

History - Second Generation Computers

- 1955 1960
- The invention of transistor
- The era of miniaturization begins.

History - Third Generation Computers

- 1960s
- the <u>Integrated Circuits</u>, also known as microchips
- silicon chips containing multiple transistors

History - Fourth Generation Computers

- 1971 present
- large-scale integration or LSI
 1000 devices per chip)
- very large-scale integration or VLSI
 - 10000 devices per chip)

Overview of Computer Software

• Operating System (OS)

- the collection of computer programs that control the interaction of the user and the computer hardware.
- E.g. Windows, Unix
- Application Software
 - Programs developed to assist a computer user in accomplishing specific tasks.
 - E.g. Microsoft Word
- In order to create new application software, we need to write lists of instruction (program) to the computer to execute

Programming Language

- The defining feature of modern computers which distinguishes them from all other machines is that they can be programmed
- Programming is instructing a computer to do something for you with the help of a Programming Language
- A programming language contains instructions for the computer to perform a specific action or a specific task:
 - Display "I like programming"
 - Display the current time

Programming Language

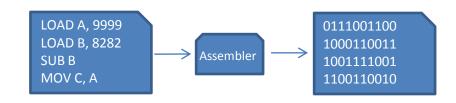
- Programming Language is a Formal Language used to communicate to a computer
 - Very specific (one word means one thing context free) since to 'talk' to a computer; to instruct a computer; our commands must be 100% clear and correct
- The description of a programming language is usually split into the two components of syntax (form) and semantics (meaning)
- A programming paradigm is a fundamental style of computer programming :
 - Functional : tell what to do but not how (sum [1...10])
 - Imperative : describing step by step
 - Object-Oriented and Logical Programming

Programming Language

- Special-purpose : is design for a particular type of application
 - Structured Query Language (SQL)
- General-purpose : can be used to obtain solutions for many types of problems.
 - Machine Languages
 - Assembly Languages
 - High-Level Languages

Machine Language

- The only language that the processor actually understands
- Consists of binary codes: 0 and 1
 - Example: 00010101
 11010001
 01001100
- Each of the lines above corresponds to a specific task to be done by the processor
- Programming in machine code is difficult and slow since it is difficult to memorize all the instructions
- Mistakes can happen very easily
- Processor and Architecture dependent (different machine language for different type of CPU) – not portable



Assembly Language

- Enables machine code to be represented in words and numbers
- Example of a program in assembly language:

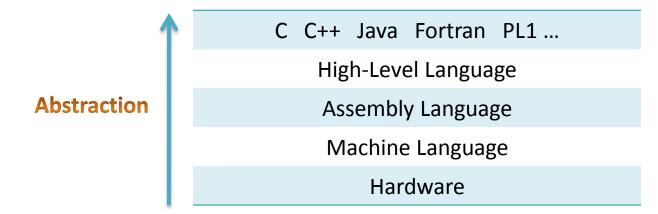
LOAD A, 9999 LOAD B, 8282 SUB B MOV C, A

- Easier to understand and memorize (called Mnemonics), compared to machine code but still quite difficult to use
- Cannot be processed directly by a computer, must be converted to machine language using assemblers
- Processor and Architecture dependent not portable

Department of Computer Engineering 24 Sharif University of Technology

High-Level Language

- Machine independent programming language that combines algebraic expression and English words
- Example:


c = b - a

- Processor independent the same code can be run on different processors
- Examples: Basic, Fortran, Pascal, Cobol, C, C++, Java
- High level language needs to be translated (compiled) to machine code by a program called compiler so that it can be executed by the processor

Programming Language Abstraction

C History

- BCPL, 1967, Martin Richards
 - writing operating-systems software and compiler
- B, 1969, Ken Thomson
 - based on BCPL
- C, 1972, Dennis Ritchie
 - based on BCPL and B
 - at Bell Laboratories
 - originally implemented on a DEC PDP-11

C History

 In 1983, the American National Standards Institute (ANSI) established a committee to provide a modern, comprehensive definition of C. The resulting definition, the ANSI standard, or ANSI C, was completed late 1988

– updated in 1999

- Because C is a hardware-independent, widely available language, applications written in C can run with little or no modifications on a wide range of different computer systems
 - Portable programs

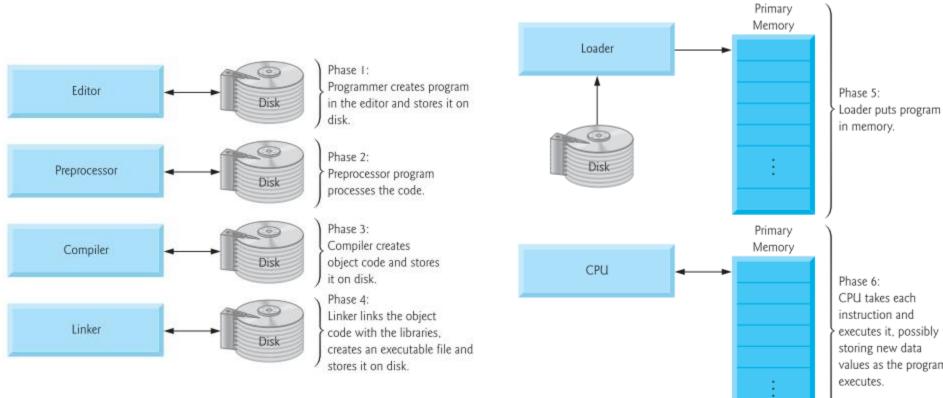
C – An Imperative Language

- C is a highly imperative formal language
 - We must tell it exactly how to do what
 - the means and functions to use
 - which libraries to use
 - when to add a new line
 - when an instruction is finished
 - in short: everything and anything...
- filename.c

C++ Programming Language

- early 1980s, Bjarne Stroustrup
 - at Bell Labroratory
 - C++ a superset of C
 - object-oriented programming
 - Objects are essentially reusable software components that model items in the real world
- filename.cpp

Typical C Program Development Environment


- C systems generally consist of several parts:
 - a program development environment
 - the language
 - the C Standard Library

• C programs typically go through six phases to be executed:

- edit, preprocess, compile, link, load and execute

in memory.

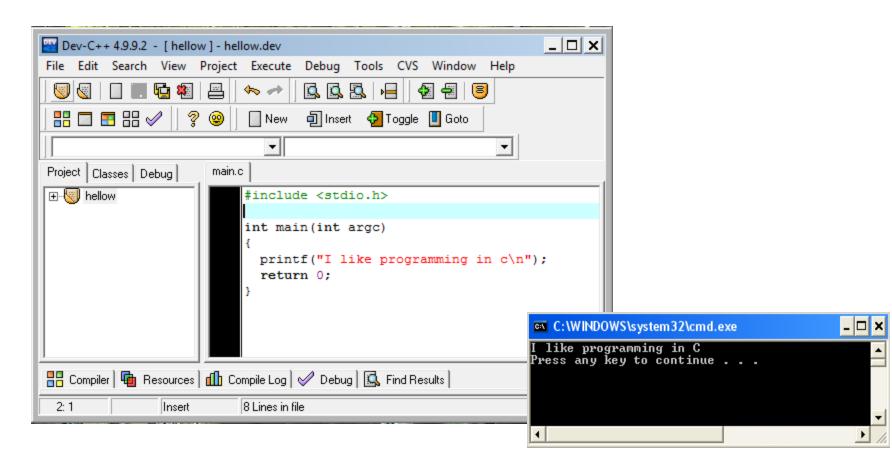
Phase 6: CPU takes each instruction and executes it, possibly storing new data values as the program executes.

Microsoft Visual Studio

- Editing a file with an editor program
- Integrated Development Environment (IDE)

🐢 c_prog - Microsoft Visual Studio					
File Edit View Project Build	Debug Tools Window Community	Help			
2 🛅 • 🛅 • 💕 🔒 🌒 🐰 🐚	🖺 🔊 - (° - 🚚 - 🖳 🕨 Deb	ug 🔹 Win32	- 🖄	▼ 2000 €	
🖪 🗞 🖕 🖛 連 連 🗎		; 🖾 🗃 👗 🖕			
Solution Explorer - Solution ' \star 4 \times	cprog.c Start Page			▼ ×	
	(Global Scope)	n 🖉 🖌	ain()	Server	
Solution 'c_prog' (1 project) Gamma Coprog Header Files Gamma Resource Files Gamma Coprog.c Source Files	<pre>#include <stdio.h> L int main() { printf("I like p: return (0); }</stdio.h></pre>	rogramming in C\n");		ver Explorer 🔆 Toolbox	
🔩 Soluti 🐼 Class 🕞 Prope	X	1111		C:\WINDOWS\system32\cmd.e	xe 🗕 🗖 🗙
Output				I like programming in C	A
Show output from: Build	- ĝ (4 B) ≡	2		Press any key to continue	· · · ·
🚰 Code Definition Window 🍃 Call Brow	vser 📃 Output				▶ //
Build succeeded			Ln 1 Col 1	Ch 1 INS	

Department of Computer Engineering


33

Sharif University of Technology

Dev-C++

Department of Computer Engineering

34

Sharif University of Technology

Preprocessor And compiler

- a preprocessor program executes automatically before the compiler's translation phase begins
 - The C preprocessor obeys special commands called preprocessor directives, which indicate that certain manipulations are to be performed on the program before compilation

• The compiler translates the C program into machine language-code (object code)

Department of Computer Engineering 35 Sharif University of Technology

Linking, Loading And Execution

- C programs typically contain references to functions defined elsewhere, such as in the standard libraries or in the private libraries
 - A linker links the object code with the code for the missing functions to produce an executable image
- Before a program can be executed, the program must first be placed in memory
 - This is done by the loader, which takes the executable image from disk and transfers it to memory
 - Additional components from shared libraries that support the program are also loaded
- Finally, the computer, under the control of its CPU, executes the program one instruction at a time

Compile log

Bev-C++ 4.9.9.2 - [hellow] - hellow.dev					
File Edit Search View Project Execute Debug Tools CVS Window Help					
🤍 🕲 🔲 🖷 🏘 🖴 🆘 → 💁 💁 🖳 🖶 🚱 🗐					
📄 📰 📰 🔠 🛷 📄 🦿 🕲 📄 🗋 New 🖆 Insert 🖓 Toggle 🔲 Goto					
Project Classes Debug main.c					
Hellow #include <stdio.h></stdio.h>					
int main(int argc)					
<pre>printf("I like programming in c\n");</pre>					
return 0;					
}					
🔠 Compiler 🖷 Resources 📶 Compile Log 🧹 Debug 🖾 Find Results 🍇 Close					
Information: Compile Log:					
Total Errors: 0 Compiler: Default compiler Building Makefile: "C:\Dev-Cpp\Makefile.win"					
Size of Output: 15663 bytes (15 KB) Executing make					
Abort gcc.exe -f "C:\Dev-Cpp\Makefile.win" all gcc.exe -c main.c -o main.o -l"C:/Dev-Cpp/include"					
gcc.exe main.o -o "hellow.exe" -L"C:/Dev-Cpp/lib"					
Execution terminated Compilation successful					
5: 39 Insert 8 Lines in file					
jo Lines in the					

Common Problems of Programming

- Usability
 - Your program is too complicated or too simple to be useful to most people
- Maintainability
 - Other people, or yourself at a later time can't easily understand the programming behind your program. This means your project won't grow and become all it's capable of being

Summary

- Computer Components
 - Hardware
 - Logical Computer Organization: Input unit, Output unit, Memory unit, ALU, CPU, Secondary storage unit
 - Generations Of Computer Hardware: vacuum tube, transistor, IC, LSI , V LSI
 - Software
 - Operating System
 - Application Software
- Programming Languages
 - programming paradigm: Functional, Imperative, Object-Oriented, Logical
 - Machine Languages: language of processor; represented by 0 and 1
 - Assembly Languages: represented in words and numbers
 - High-Level Languages: machine independent
- History Of C/C++ : based on BCPL, B; imperative language
- Typical C Program Development Environment
 - Compilation Process : edit, preprocess, compile, link, load and execute